Math 446 - Homework # 4

- 1. Are the following statements true or false?
 - (a) $3 \equiv 5 \pmod{2}$ Solution: $3-5 = -2 = 2 \cdot (-1)$ is divisible by 2. Hence $3 \equiv 5 \pmod{2}$.
 - (b) $11 \equiv -5 \pmod{5}$ Solution: 11 - (-5) = 16 is NOT divisible by 5. Hence $11 \not\equiv -5 \pmod{5}$.
 - (c) $-31 \not\equiv 10 \pmod{3}$ Solution: -31 - 10 = -41 is NOT divisible by 3. Hence $-31 \not\equiv 10 \pmod{3}$.
 - (d) $100 \equiv 12 \pmod{4}$ Solution: $100 - 12 = 88 = 4 \cdot 22$ is divisible by 4. Hence $100 \equiv 12 \pmod{4}$.
- 2. Prove the following: If x, y, z, a, b, n are integers with $n \ge 2$ then the following are true:
 - (a) $x \equiv x \pmod{n}$

Solution: Note that $x - x = 0 = n \cdot 0$. Hence *n* divides x - x. Thus $x \equiv x \pmod{n}$.

- (b) If x ≡ y(mod n), then and y ≡ x(mod n).
 Solution: Since x ≡ y(mod n) we have that ns = x y for some integer s. Multiplying by -1 gives n(-s) = y-x. Hence n divides y x. Thus y ≡ x(mod n).
- (c) If $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$, then $x \equiv z \pmod{n}$. Solution: Since $x \equiv y \pmod{n}$ we have that ns = x - y for some integer s. Since $y \equiv z \pmod{n}$ we have that nt = y - z for some integer t. Adding the equations ns = x - y and nt = y - z gives the equation n(s + t) = x - z. Hence n divides x - z. Therefore $x \equiv z \pmod{n}$.
- (d) If $a \equiv b \pmod{n}$ and $x \equiv y \pmod{n}$, then $a + x \equiv b + y \pmod{n}$.

Solution: Since $a \equiv b \pmod{n}$ we have that ns = a - b for some integer s. Since $x \equiv y \pmod{n}$ we have that nt = x - y for some integer t. Therefore

$$(a + x) - (b + y) = (a - b) + (x - y) = ns + nt = n(s + t).$$

Therefore n divides (a+x) - (b+y). Hence $a+x \equiv b+y \pmod{n}$.

(e) If a ≡ b(mod n) and x ≡ y(mod n), then ax ≡ by(mod n).
Solution: Since a ≡ b(mod n) we have that ns = a - b for some integer s. Since x ≡ y(mod n) we have that nt = x - y for some integer t. Therefore

$$ax = (b+ns)(y+nt) = by + nbt + nsy + n^2st.$$

So,

$$ax - by = n(bt + sy + nst).$$

Therefore n divides ax - by. Hence $ax \equiv by \pmod{n}$.

(f) We have that $x \equiv y \pmod{n}$ if and only if x = y + kn for some integer k.

Solution: Suppose that $x \equiv y \pmod{n}$. Then *n* divides x - y. Hence nk = x - y for some integer *k*. Thus, x = y + nk. Conversely suppose that x = y + nk. Then x - y = nk. Hence *n* divides x - y. Thus $x \equiv y \pmod{n}$.

3. In \mathbb{Z}_4 , list ten elements from each of the following equivalence classes: $\overline{0}, \overline{-3}, \overline{2}, \overline{5}$.

Solution:

$$\overline{0} = \{\dots, -20, -16, -12, -8, -4, 0, 4, 8, 12, 16, 20, \dots\}$$

$$\overline{-3} = \{\dots, -23, -19, -15, -11, -7, -3, 1, 5, 9, 13, 17, \dots\}$$

$$\overline{2} = \{\dots, -18, -14, -10, -6, -2, 2, 6, 10, 14, 18, 22, \dots\}$$

$$\overline{5} = \{\dots, -15, -11, -7, -3, 1, 5, 9, 13, 17, 21, 25, \dots\}$$

- 4. Answer the following questions.
 - (a) Is $\overline{0} = \overline{8}$ in \mathbb{Z}_4 ?

Solution: Note that $0-8 = -8 = 4 \cdot (-2)$. Hence 4 divides 0-8. Thus $0 \equiv 8 \pmod{4}$. Therefore $\overline{0} = \overline{8}$.

- (b) Is $\overline{-10} = \overline{-2}$ in \mathbb{Z}_5 ? **Solution:** Note that -10 - (-2) = -8 which is not divisible by 5. Thus $-10 \not\equiv -2 \pmod{5}$. Therefore $\overline{-10} \not\equiv \overline{-2}$.
- (c) Is $\overline{1} = \overline{13}$ in \mathbb{Z}_6 ? Solution: Note that $1 - 13 = -12 = 6 \cdot (-2)$. Hence 6 divides 1 - 13. Thus $1 \equiv 13 \pmod{6}$. Therefore $\overline{1} = \overline{13}$ in \mathbb{Z}_6 .
- (d) Is $\overline{2} = \overline{52}$ in \mathbb{Z}_4 ? **Solution:** Note that 2 - 52 = -50 which is not divisible by 4. Therefore $\overline{2} \neq \overline{52}$ in \mathbb{Z}_4 .
- (e) Is $\overline{-5} = \overline{19}$ in \mathbb{Z}_4 ? Solution: Note that $-5 - 19 = -24 = 4 \cdot (-6)$ is divisible by 4. Therefore $\overline{-5} = \overline{19}$ in \mathbb{Z}_4 .
- 5. Answer the following questions where the elements are from \mathbb{Z}_8 .
 - (a) Is $\overline{0} = \overline{12}$? Solution: No, because 0 - 12 = -12 is not a multiple of 8.
 - (b) Is $\overline{-2} = \overline{14}$? Solution: Yes, because -2 - 14 = -16 is a multiple of 8.
 - (c) Is $\overline{-51} = \overline{-109}$? Solution: No, because -51 - (-109) = 58 is not a multiple of 8.
 - (d) Is $\overline{3} = \overline{43}$? Solution: Yes, because 3 - 43 = -40 is a multiple of 8.
- 6. Consider $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Calculate the following. For each answer \overline{x} that you calculate, reduce it so that $0 \le x \le 6$.
 - (a) $\overline{2} + \overline{6}$ Solution: $\overline{2} + \overline{6} = \overline{8} = \overline{1}$.
 - (b) $\overline{3} + \overline{4}$ Solution: $\overline{3} + \overline{4} = \overline{7} = \overline{0}$.
 - (c) 1473

Solution: To reduce 1473 number modulo 7 we use the division algorithm. Dividing 7 into 1473 we get that $1473 = 210 \cdot 7 + 3$. Now we use the fact that $\overline{7} = \overline{0}$ in \mathbb{Z}_7 to get that

$$\overline{1473} = \overline{210} \cdot \overline{7} + \overline{3} = \overline{210} \cdot \overline{0} + \overline{3} = \overline{3}$$

- (d) $\overline{3} \cdot \overline{5}$ Solution: $\overline{3} \cdot \overline{5} = \overline{15} = \overline{1}$.
- (e) $\overline{2} \cdot \overline{3} + \overline{4} \cdot \overline{6}$ **Solution**: $\overline{2} \cdot \overline{3} + \overline{4} \cdot \overline{6} = \overline{30} = \overline{2}$. (f) $\overline{5} \cdot \overline{2} + \overline{1} + \overline{2} \cdot \overline{4} \cdot \overline{6}$
- Solution: $\overline{5} \cdot \overline{2} + \overline{1} + \overline{2} \cdot \overline{4} \cdot \overline{6} = \overline{10} + \overline{1} + \overline{48} = \overline{3} + \overline{1} + \overline{6} = \overline{10} = \overline{3}$.
- 7. Consider $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Calculate the following. For each answer \overline{x} that you calculate, reduce it so that $0 \le x \le 3$.
 - (a) $\overline{2} + \overline{3}$ Solution: $\overline{2} + \overline{3} = \overline{5} = \overline{1}$.
 - (b) $\overline{1} + \overline{3}$ Solution: $\overline{1} + \overline{3} = \overline{4} = \overline{0}$.
 - (c) 4630

Solution: To reduce 4630 number modulo 4 we use the division algorithm. Dividing 4 into 4630 we get that $4630 = 1157 \cdot 4 + 2$. Now we use the fact that $\overline{4} = \overline{0}$ in \mathbb{Z}_4 to get that

$$\overline{4630} = \overline{1157} \cdot \overline{4} + \overline{2} = \overline{1157} \cdot \overline{0} + \overline{2} = \overline{2}$$

(d) $\overline{3} \cdot \overline{2}$

Solution: $\overline{3} \cdot \overline{2} = \overline{6} = \overline{2}$.

- (e) $\overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3}$ Solution: $\overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{0} + \overline{1} = \overline{1}$.
- (f) $\overline{3} \cdot \overline{2} + \overline{1} + \overline{2} + \overline{2} \cdot \overline{2} \cdot \overline{2}$ Solution: $\overline{3} \cdot \overline{2} + \overline{1} + \overline{2} + \overline{2} \cdot \overline{2} \cdot \overline{2} = \overline{6} + \overline{3} + \overline{8} = \overline{17} = \overline{1}$.
- 8. Suppose that x is an odd integer.
 - (a) Prove that $\overline{x} = \overline{1}$ or $\overline{x} = \overline{3}$ in \mathbb{Z}_4 .

Solution: Let x be an odd integer. Using the division algorithm, we divide x by 4 to get x = 4q + r where q and r are integers and $0 \le r < 4$. Thus r = 0, r = 1, r = 2, or r = 3.

If r = 0, then x = 4q + 0 = 2(2q), which is even. This case can't happen because x is odd.

If r = 2, then x = 4q + 2 = 2(2q + 1) which is even. So again, this case can't happen.

Therefore, r = 1 or r = 3. Thus, x = 4q + 1 or x = 4q + 3. So, x - 1 = 4q or x - 3 = 4q. Thus, either $x \equiv 1 \pmod{4}$ or $x \equiv 3 \pmod{4}$. Therefore either $\overline{x} = \overline{1}$ or $\overline{x} = \overline{3}$.

(b) Prove that $\overline{x}^2 = \overline{1}$ in \mathbb{Z}_4 .

Solution: Since x is odd, by exercise (8a) we have that either $\overline{x} = \overline{1}$ or $\overline{x} = \overline{3}$. Thus either $\overline{x}^2 = \overline{1}$ or $\overline{x}^2 = \overline{3}^2 = \overline{9} = \overline{1}$.

9. (a) Let p be a prime and x and y be integers. Suppose that $\overline{xy} = \overline{0}$ in \mathbb{Z}_p . Prove that either $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$.

Solution: Suppose that $\overline{xy} = \overline{0}$ in \mathbb{Z}_p . Then $xy \equiv 0 \pmod{p}$. Thus p divides xy. Since p is a prime we must have that either p|x or p|y. Thus either $x \equiv 0 \pmod{p}$ or $y \equiv 0 \pmod{p}$. So either $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$.

(b) Give an example where n is not prime with $\overline{xy} = \overline{0}$ but $\overline{x} \neq \overline{0}$ and $\overline{y} \neq \overline{0}$.

Solution: In \mathbb{Z}_6 we have that $\overline{2} \cdot \overline{3} = \overline{6} = \overline{0}$ but $\overline{2} \neq \overline{0}$ and $\overline{3} \neq \overline{0}$.

10. Let p be a prime. Suppose that $x^2 \equiv y^2 \pmod{p}$. Prove that either p|(x+y) or p|(x-y).

Solution: Suppose that $x^2 \equiv y^2 \pmod{p}$. Then p divides $x^2 - y^2$. Hence p divides the product (x - y)(x + y). Since p is prime, either p|(x - y) or p|(x + y).

- 11. Let *n* be an integer with $n \ge 2$. Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$. Prove the following. (You will need to use the corresponding properties of the integers.)
 - (a) $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$.

Solution: Since a and b are integers we have that $a \cdot b = b \cdot a$. Thus

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b} = \overline{b \cdot a} = \overline{b} \cdot \overline{a}.$$

(b) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$.

Solution: Since a and b are integers we have that a + b = b + a. Thus

$$\overline{a} + \overline{b} = \overline{a + b} = \overline{b + a} = \overline{b} + \overline{a}$$

(c) $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$. **Solution:** Since a, b, c are integers we have that $a \cdot (b + c) = a \cdot b + a \cdot c$. Thus $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot (\overline{b + c}) = \overline{a \cdot (b + c)} = \overline{a \cdot b} + \overline{a \cdot c} = \overline{a \cdot b} + \overline{a \cdot c} = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$

$$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a \cdot (b + c)} = \overline{a \cdot b} + \overline{a \cdot c} = \overline{a \cdot b} + \overline{a \cdot c} = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}.$$

(d)
$$\overline{a} \cdot (\overline{b} \cdot \overline{c}) = (\overline{a} \cdot \overline{b}) \cdot \overline{c}.$$

Solution: Since a, b, c are integers we have that $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. Thus

$$\overline{a} \cdot (\overline{b} \cdot \overline{c}) = \overline{a} \cdot \overline{b \cdot c} = \overline{a \cdot (b \cdot c)} = \overline{(a \cdot b) \cdot c} = \overline{a \cdot b} \cdot \overline{c} = (\overline{a} \cdot \overline{b}) \cdot \overline{c}.$$

(e) $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}.$

Solution: Since a, b, c are integers we have that a + (b + c) = (a + b) + c. Thus

$$\overline{a} + (\overline{b} + \overline{c}) = \overline{a} + \overline{b} + \overline{c} = \overline{a + (b + c)} = \overline{(a + b) + c} = \overline{a + b} + \overline{c} = (\overline{a} + \overline{b}) + \overline{c}.$$

12. Prove that 4 does not divide $n^2 + 2$ for any integer n.

Solution: We prove this by contradiction. Suppose that there exists an integer n where 4 divides $n^2 + 2$. Then $n^2 + 2 = 4k$ for some integer k. Therefore

$$\overline{n^2 + 2} = \overline{4k}$$

in \mathbb{Z}_4 . Hence

$$\overline{n}^2 + \overline{2} = \overline{4} \cdot \overline{k}$$

in \mathbb{Z}_4 . Since $\overline{4} = \overline{0}$ we have that

$$\overline{n}^2 + \overline{2} = \overline{0}.$$

Adding $\overline{-2} = \overline{2}$ to both sides we have that

$$\overline{n}^2 = \overline{2}$$

in \mathbb{Z}_4 . However, this equation is not possible in \mathbb{Z}_4 since

$$\overline{0}^2 = \overline{0}$$

$$\overline{1}^2 = \overline{1}$$

$$\overline{2}^2 = \overline{0}$$

$$\overline{3}^2 = \overline{1}.$$

13. Prove that $15x^2 - 7y^2 = 1$ has no integer solutions.

Solution: We prove this by contradiction. Suppose that x and y are integers with $15x^2 - 7y^2 = 1$. Then

$$\overline{15}\overline{x}^2 + \overline{-7}\overline{y}^2 = \overline{1}$$

in \mathbb{Z}_3 . Since $\overline{15} = \overline{0}$ and $\overline{-7} = \overline{2}$ in \mathbb{Z}_3 we have that

$$\overline{2}\overline{y}^2 = \overline{1}.$$

Multiplying by $\overline{2}$ on both sides and using the fact that $\overline{2}\cdot\overline{2}=\overline{4}=\overline{1}$ we have that

$$\overline{y}^2 = \overline{2}.$$

However this equation has no solutions in \mathbb{Z}_3 since

$$\overline{0}^2 = \overline{0} \overline{1}^2 = \overline{1} \overline{2}^2 = \overline{1}.$$

14. Prove that $x^2 - 5y^2 = 2$ has no integer solutions.

Solution: We prove this by contradiction. Suppose that x and y are integers with $x^2 - 5y^2 = 2$. Then in \mathbb{Z}_5 we have that

$$\overline{x}^2 + \overline{-5} \cdot \overline{y}^2 = \overline{2}.$$

Since $\overline{-5} = \overline{0}$ in \mathbb{Z}_5 we have that

$$\overline{x}^2 = \overline{2}.$$

However, this equation has no solutions in \mathbb{Z}_5 since

$$\begin{array}{rcl} \overline{0}^2 & = & \overline{0} \\ \overline{1}^2 & = & \overline{1} \\ \overline{2}^2 & = & \overline{4} \\ \overline{3}^2 & = & \overline{4} \\ \overline{4}^2 & = & \overline{1}. \end{array}$$

15. Prove that the only integer solution to $x^2 + y^2 = 6z^2$ is (x, y, z) = (0, 0, 0).

Solution: Suppose by way of contradiction that there was a solution of $x^2 + y^2 = 6z^2$ where not all x, y, and z are equal to 0.

If any of x, y, or z is nonzero, then they are all nonzero. Why? Case 1: Suppose that $x \neq 0$. Then $z^2 = (1/6)x^2 + (1/6)y^2 > 0$. So z > 0. Then if y = 0 we would have that $x/z = \pm \sqrt{6}$ which is impossible because $\sqrt{6}$ is irrational. Case 2: Suppose that $y \neq 0$. This is the same as the $x \neq 0$ case. Case 3: If $z \neq 0$ then $0 < 6z^2 = x^2 + y^2$. So one of xor y must not be equal to 0. Suppose that $x \neq 0$. Then if y = 0 we would have that $x/z = \pm \sqrt{6}$. So $y \neq 0$. The same thing happens if we started with the assumption that $y \neq 0$.

From the above we can conclude that none of x, y, and z are equal to 0. We may assume that gcd(x, y, z) = 1 for if say d = gcd(x, y, z) > 0 then x = da, y = db, and z = dc where a, b, c are positive integers and by dividing $x^2 + y^2 = 6z^2$ by d^2 we get $a^2 + b^2 = 6c^2$ which is the same equation but with gcd(a, b, c) = 1.

If we take $x^2 + y^2 = 6z^2$ and mod by 3 then we get $\overline{x}^2 + \overline{y}^2 = \overline{0}$ in \mathbb{Z}_3 . Note that in \mathbb{Z}_3 we have that $\overline{0}^2 = \overline{0}$, $\overline{1}^2 = \overline{1}$, and $\overline{2}^2 = \overline{1}$. Therefore, \overline{x}^2 can only equal $\overline{0}$ or $\overline{1}$. Similarly for \overline{y}^2 . Since $\overline{x}^2 + \overline{y}^2 = \overline{0}$, if we consider all the combinations then we arrive at the conclusion that $\overline{x} = \overline{0}$ and $\overline{y} = \overline{0}$. Therefore, since this is in \mathbb{Z}_3 we must have that x = 3s and y = 3t where s and t are integers. Plugging this back into $x^2 + y^2 = 6z^2$ gives $3(s^2 + t^2) = 2z^2$. Therefore 3 divides $2z^2$. Since $\gcd(3, 2) = 1$ we must have that 3 divides z^2 . Since 3 is prime and 3 divides $z \cdot z$ we have that 3 must divide z. But then 3 is a common divisor of x, y, and z. Contradiction.

- 16. Let $n, x, y \in \mathbb{Z}$ with $n \geq 2$. Consider the elements \overline{x} and \overline{y} in \mathbb{Z}_n . Prove:
 - (a) $\overline{x} = \overline{y}$ if and only if $x \equiv y \pmod{n}$.

Solution: Suppose that $\overline{x} = \overline{y}$. By definition

$$\overline{x} = \{ t \in \mathbb{Z} \mid t \equiv x \pmod{n} \}.$$

Since $x \equiv x \pmod{n}$ we have that $x \in \overline{x}$. Therefore, $x \in \overline{y}$ because

 $\overline{x} = \overline{y}$. By definition

$$\overline{y} = \{ z \in \mathbb{Z} \mid z \equiv y \pmod{n} \}.$$

Hence $x \equiv y \pmod{n}$.

Conversely, suppose that $x \equiv y \pmod{n}$. We now show that $\overline{x} = \overline{y}$. Let us begin by showing that $\overline{x} \subseteq \overline{y}$. Let $z \in \overline{x}$. By definition

$$\overline{x} = \{ t \in \mathbb{Z} \mid t \equiv x (\text{mod } n) \}.$$

Thus, $z \equiv x \pmod{n}$. Since $z \equiv x \pmod{n}$ and $x \equiv y \pmod{n}$ we have that $z \equiv y \pmod{n}$. Thus $z \in \overline{y}$. Therefore $\overline{x} \subseteq \overline{y}$. A similar argument shows that $\overline{y} \subseteq \overline{x}$. Therefore, $\overline{x} = \overline{y}$.

(b) Either $\overline{x} \cap \overline{y} = \emptyset$ or $\overline{x} = \overline{y}$.

Solution: If $\overline{x} \cap \overline{y} = \emptyset$, then we are done. Suppose that $\overline{x} \cap \overline{y} \neq \emptyset$. Then there exists $z \in \overline{x} \cap \overline{y}$. Since $z \in \overline{x}$ we have that $z \equiv x \pmod{n}$. Since $z \in \overline{y}$ we have that $z \equiv y \pmod{n}$. Therefore, $x \equiv z \pmod{n}$ and $z \equiv y \pmod{n}$ which gives us that $x \equiv y \pmod{n}$. By exercise (16a) we have that $\overline{x} = \overline{y}$.

17. Prove that if a positive integer x > 1 ends in a 7 then it is not a square. For example, x = 137 is not a square.

Solution 1: Let x be a positive integer that ends in a 7.

Then in $\overline{x} = \overline{7}$ in \mathbb{Z}_{10} .

For example, $\overline{137} = \overline{130} + \overline{7} = \overline{0} + \overline{7} = \overline{7}$ in \mathbb{Z}_{10} .

Suppose by way of contradiction that x is a square, that is $x = k^2$ where k is an integer.

Then $\overline{k}^2 = \overline{x} = \overline{7}$ in \mathbb{Z}_{10} .

But this can't happen for if we look at all the possible cases for what \overline{k} can be in \mathbb{Z}_{10} we get that

$$\overline{0}^2 = \overline{0},$$

$$\overline{1}^2 = \overline{1},$$

$$\overline{2}^2 = \overline{4},$$

$$\overline{3}^2 = \overline{9},$$

$$\overline{4}^2 = \overline{16} = \overline{6},$$

 $\overline{5}^{2} = \overline{25} = \overline{5},$ $\overline{6}^{2} = \overline{36} = \overline{6},$ $\overline{7}^{2} = \overline{49} = \overline{9},$ $\overline{8}^{2} = \overline{64} = \overline{4},$ and $\overline{9}^{2} = \overline{81} = \overline{1}.$ Therefore, there is no \overline{k} in \mathbb{Z}_{10} with $\overline{k}^{2} = \overline{7}.$

Hence, x cannot be a square.

Solution 2: Another way to do this is the same as above but use \mathbb{Z}_5 instead of \mathbb{Z}_{10}

If x is a positive integer that ends in a 7 then $\overline{x} = \overline{2}$ in \mathbb{Z}_5 .

For example, $\overline{137} = \overline{135} + \overline{2} = \overline{0} + \overline{2} = \overline{2}$ in \mathbb{Z}_5 .

Suppose by way of contradiction that x is a square, that is $x = k^2$ where k is an integer.

Then $\overline{k}^2 = \overline{x} = \overline{2}$ in \mathbb{Z}_5 .

But this can't happen for if we look at all the possible cases for what \overline{k} can be in \mathbb{Z}_5 we get that

 $=\overline{2}.$

$$\overline{0}^{2} = \overline{0},$$

$$\overline{1}^{2} = \overline{1},$$

$$\overline{2}^{2} = \overline{4},$$

$$\overline{3}^{2} = \overline{9} = \overline{4},$$
and
$$\overline{4}^{2} = \overline{16} = \overline{1}.$$
Therefore, there is no \overline{k} in \mathbb{Z}_{5} with \overline{k}^{2}

Hence, x cannot be a square.