Math 446 - Homework \# 4

1. Are the following statements true or false?
(a) $3 \equiv 5(\bmod 2)$

Solution: $3-5=-2=2 \cdot(-1)$ is divisible by 2 . Hence $3 \equiv$ $5(\bmod 2)$.
(b) $11 \equiv-5(\bmod 5)$

Solution: $11-(-5)=16$ is NOT divisible by 5 . Hence $11 \not \equiv$ $-5(\bmod 5)$.
(c) $-31 \not \equiv 10(\bmod 3)$

Solution: $-31-10=-41$ is NOT divisible by 3 . Hence $-31 \not \equiv$ $10(\bmod 3)$.
(d) $100 \equiv 12(\bmod 4)$

Solution: $100-12=88=4 \cdot 22$ is divisible by 4 . Hence $100 \equiv$ $12(\bmod 4)$.
2. Prove the following: If x, y, z, a, b, n are integers with $n \geq 2$ then the following are true:
(a) $x \equiv x(\bmod n)$

Solution: Note that $x-x=0=n \cdot 0$. Hence n divides $x-x$. Thus $x \equiv x(\bmod n)$.
(b) If $x \equiv y(\bmod n)$, then and $y \equiv x(\bmod n)$.

Solution: Since $x \equiv y(\bmod n)$ we have that $n s=x-y$ for some integer s. Multiplying by -1 gives $n(-s)=y-x$. Hence n divides $y-x$. Thus $y \equiv x(\bmod n)$.
(c) If $x \equiv y(\bmod n)$ and $y \equiv z(\bmod n)$, then $x \equiv z(\bmod n)$.

Solution: Since $x \equiv y(\bmod n)$ we have that $n s=x-y$ for some integer s. Since $y \equiv z(\bmod n)$ we have that $n t=y-z$ for some integer t. Adding the equations $n s=x-y$ and $n t=y-z$ gives the equation $n(s+t)=x-z$. Hence n divides $x-z$. Therefore $x \equiv z(\bmod n)$.
(d) If $a \equiv b(\bmod n)$ and $x \equiv y(\bmod n)$, then $a+x \equiv b+y(\bmod n)$.

Solution: Since $a \equiv b(\bmod n)$ we have that $n s=a-b$ for some integer s. Since $x \equiv y(\bmod n)$ we have that $n t=x-y$ for some integer t. Therefore

$$
(a+x)-(b+y)=(a-b)+(x-y)=n s+n t=n(s+t) .
$$

Therefore n divides $(a+x)-(b+y)$. Hence $a+x \equiv b+y(\bmod n)$.
(e) If $a \equiv b(\bmod n)$ and $x \equiv y(\bmod n)$, then $a x \equiv b y(\bmod n)$.

Solution: Since $a \equiv b(\bmod n)$ we have that $n s=a-b$ for some integer s. Since $x \equiv y(\bmod n)$ we have that $n t=x-y$ for some integer t. Therefore

$$
a x=(b+n s)(y+n t)=b y+n b t+n s y+n^{2} s t .
$$

So,

$$
a x-b y=n(b t+s y+n s t) .
$$

Therefore n divides $a x-b y$. Hence $a x \equiv b y(\bmod n)$.
(f) We have that $x \equiv y(\bmod n)$ if and only if $x=y+k n$ for some integer k.
Solution: Suppose that $x \equiv y(\bmod n)$. Then n divides $x-y$. Hence $n k=x-y$ for some integer k. Thus, $x=y+n k$.
Conversely suppose that $x=y+n k$. Then $x-y=n k$. Hence n divides $x-y$. Thus $x \equiv y(\bmod n)$.
3. In \mathbb{Z}_{4}, list ten elements from each of the following equivalence classes: $\overline{0}, \overline{-3}, \overline{2}, \overline{5}$.

Solution:

$$
\begin{aligned}
\overline{0} & =\{\ldots,-20,-16,-12,-8,-4,0,4,8,12,16,20, \ldots\} \\
\overline{-3} & =\{\ldots,-23,-19,-15,-11,-7,-3,1,5,9,13,17, \ldots\} \\
\overline{2} & =\{\ldots,-18,-14,-10,-6,-2,2,6,10,14,18,22, \ldots\} \\
\overline{5} & =\{\ldots,-15,-11,-7,-3,1,5,9,13,17,21,25, \ldots\}
\end{aligned}
$$

4. Answer the following questions.
(a) Is $\overline{0}=\overline{8}$ in \mathbb{Z}_{4} ?

Solution: Note that $0-8=-8=4 \cdot(-2)$. Hence 4 divides $0-8$. Thus $0 \equiv 8(\bmod 4)$. Therefore $\overline{0}=\overline{8}$.
(b) Is $\overline{-10}=\overline{-2}$ in \mathbb{Z}_{5} ?

Solution: Note that $-10-(-2)=-8$ which is not divisible by 5 . Thus $-10 \not \equiv-2(\bmod 5)$. Therefore $\overline{-10} \neq \overline{-2}$.
(c) Is $\overline{1}=\overline{13}$ in \mathbb{Z}_{6} ?

Solution: Note that $1-13=-12=6 \cdot(-2)$. Hence 6 divides $1-13$. Thus $1 \equiv 13(\bmod 6)$. Therefore $\overline{1}=\overline{13}$ in \mathbb{Z}_{6}.
(d) Is $\overline{2}=\overline{52}$ in \mathbb{Z}_{4} ?

Solution: Note that $2-52=-50$ which is not divisible by 4 . Therefore $\overline{2} \neq \overline{52}$ in \mathbb{Z}_{4}.
(e) Is $\overline{-5}=\overline{19}$ in \mathbb{Z}_{4} ?

Solution: Note that $-5-19=-24=4 \cdot(-6)$ is divisible by 4. Therefore $\overline{-5}=\overline{19}$ in \mathbb{Z}_{4}.
5. Answer the following questions where the elements are from \mathbb{Z}_{8}.
(a) Is $\overline{0}=\overline{12}$?

Solution: No, because $0-12=-12$ is not a multiple of 8 .
(b) Is $\overline{-2}=\overline{14}$?

Solution: Yes, because $-2-14=-16$ is a multiple of 8 .
(c) Is $\overline{-51}=\overline{-109}$?

Solution: No, because $-51-(-109)=58$ is not a multiple of 8 .
(d) Is $\overline{3}=\overline{43}$?

Solution: Yes, because $3-43=-40$ is a multiple of 8 .
6. Consider $\mathbb{Z}_{7}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Calculate the following. For each answer \bar{x} that you calculate, reduce it so that $0 \leq x \leq 6$.
(a) $\overline{2}+\overline{6}$

Solution: $\overline{2}+\overline{6}=\overline{8}=\overline{1}$.
(b) $\overline{3}+\overline{4}$

Solution: $\overline{3}+\overline{4}=\overline{7}=\overline{0}$.
(c) 1473

Solution: To reduce 1473 number modulo 7 we use the division algorithm. Dividing 7 into 1473 we get that $1473=210 \cdot 7+3$.
Now we use the fact that $\overline{7}=\overline{0}$ in \mathbb{Z}_{7} to get that

$$
\overline{1473}=\overline{210} \cdot \overline{7}+\overline{3}=\overline{210} \cdot \overline{0}+\overline{3}=\overline{3}
$$

(d) $\overline{3} \cdot \overline{5}$

Solution: $\overline{3} \cdot \overline{5}=\overline{15}=\overline{1}$.
(e) $\overline{2} \cdot \overline{3}+\overline{4} \cdot \overline{6}$

Solution: $\overline{2} \cdot \overline{3}+\overline{4} \cdot \overline{6}=\overline{30}=\overline{2}$.
(f) $\overline{5} \cdot \overline{2}+\overline{1}+\overline{2} \cdot \overline{4} \cdot \overline{6}$

Solution: $\overline{5} \cdot \overline{2}+\overline{1}+\overline{2} \cdot \overline{4} \cdot \overline{6}=\overline{10}+\overline{1}+\overline{48}=\overline{3}+\overline{1}+\overline{6}=\overline{10}=\overline{3}$.
7. Consider $\mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Calculate the following. For each answer \bar{x} that you calculate, reduce it so that $0 \leq x \leq 3$.
(a) $\overline{2}+\overline{3}$

Solution: $\overline{2}+\overline{3}=\overline{5}=\overline{1}$.
(b) $\overline{1}+\overline{3}$

Solution: $\overline{1}+\overline{3}=\overline{4}=\overline{0}$.
(c) 4630

Solution: To reduce 4630 number modulo 4 we use the division algorithm. Dividing 4 into 4630 we get that $4630=1157 \cdot 4+2$. Now we use the fact that $\overline{4}=\overline{0}$ in \mathbb{Z}_{4} to get that

$$
\overline{4630}=\overline{1157} \cdot \overline{4}+\overline{2}=\overline{1157} \cdot \overline{0}+\overline{2}=\overline{2}
$$

(d) $\overline{3} \cdot \overline{2}$

Solution: $\overline{3} \cdot \overline{2}=\overline{6}=\overline{2}$.
(e) $\overline{2} \cdot \overline{2}+\overline{3} \cdot \overline{3}$

Solution: $\overline{2} \cdot \overline{2}+\overline{3} \cdot \overline{3}=\overline{4}+\overline{9}=\overline{0}+\overline{1}=\overline{1}$.
(f) $\overline{3} \cdot \overline{2}+\overline{1}+\overline{2}+\overline{2} \cdot \overline{2} \cdot \overline{2}$

Solution: $\overline{3} \cdot \overline{2}+\overline{1}+\overline{2}+\overline{2} \cdot \overline{2} \cdot \overline{2}=\overline{6}+\overline{3}+\overline{8}=\overline{17}=\overline{1}$.
8. Suppose that x is an odd integer.
(a) Prove that $\bar{x}=\overline{1}$ or $\bar{x}=\overline{3}$ in \mathbb{Z}_{4}.

Solution: Let x be an odd integer. Using the division algorithm, we divide x by 4 to get $x=4 q+r$ where q and r are integers and $0 \leq r<4$. Thus $r=0, r=1, r=2$, or $r=3$.
If $r=0$, then $x=4 q+0=2(2 q)$, which is even. This case can't happen because x is odd.

If $r=2$, then $x=4 q+2=2(2 q+1)$ which is even. So again, this case can't happen.
Therefore, $r=1$ or $r=3$. Thus, $x=4 q+1$ or $x=4 q+3$. So, $x-1=4 q$ or $x-3=4 q$. Thus, either $x \equiv 1(\bmod 4)$ or $x \equiv 3(\bmod 4)$. Therefore either $\bar{x}=\overline{1}$ or $\bar{x}=\overline{3}$.
(b) Prove that $\bar{x}^{2}=\overline{1}$ in \mathbb{Z}_{4}.

Solution: Since x is odd, by exercise (8a) we have that either $\bar{x}=\overline{1}$ or $\bar{x}=\overline{3}$. Thus either $\bar{x}^{2}=\overline{1}$ or $\bar{x}^{2}=\overline{3}^{2}=\overline{9}=\overline{1}$.
9. (a) Let p be a prime and x and \underline{y} be integers. Suppose that $\overline{x y}=\overline{0}$ in \mathbb{Z}_{p}. Prove that either $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$.
Solution: Suppose that $\overline{x y}=\overline{0}$ in \mathbb{Z}_{p}. Then $x y \equiv 0(\bmod p)$. Thus p divides $x y$. Since p is a prime we must have that either $p \mid x$ or $p \mid y$. Thus either $x \equiv 0(\bmod p)$ or $y \equiv 0(\bmod p)$. So either $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$.
(b) Give an example where n is not prime with $\overline{x y}=\overline{0}$ but $\bar{x} \neq \overline{0}$ and $\bar{y} \neq \overline{0}$.
Solution: In \mathbb{Z}_{6} we have that $\overline{2} \cdot \overline{3}=\overline{6}=\overline{0}$ but $\overline{2} \neq \overline{0}$ and $\overline{3} \neq \overline{0}$.
10. Let p be a prime. Suppose that $x^{2} \equiv y^{2}(\bmod p)$. Prove that either $p \mid(x+y)$ or $p \mid(x-y)$.
Solution: Suppose that $x^{2} \equiv y^{2}(\bmod p)$. Then p divides $x^{2}-y^{2}$. Hence p divides the product $(x-y)(x+y)$. Since p is prime, either $p \mid(x-y)$ or $p \mid(x+y)$.
11. Let n be an integer with $n \geq 2$. Let $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_{n}$. Prove the following. (You will need to use the corresponding properties of the integers.)
(a) $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a}$.

Solution: Since a and b are integers we have that $a \cdot b=b \cdot a$. Thus

$$
\bar{a} \cdot \bar{b}=\overline{a \cdot b}=\overline{b \cdot a}=\bar{b} \cdot \bar{a}
$$

(b) $\bar{a}+\bar{b}=\bar{b}+\bar{a}$.

Solution: Since a and b are integers we have that $a+b=b+a$. Thus

$$
\bar{a}+\bar{b}=\overline{a+b}=\overline{b+a}=\bar{b}+\bar{a}
$$

(c) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}$.

Solution: Since a, b, c are integers we have that $a \cdot(b+c)=$ $a \cdot b+a \cdot c$. Thus $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot(\overline{b+c})=\overline{a \cdot(b+c)}=\overline{a \cdot b+a \cdot c}=\overline{a \cdot b}+\overline{a \cdot c}=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}$.
(d) $\bar{a} \cdot(\bar{b} \cdot \bar{c})=(\bar{a} \cdot \bar{b}) \cdot \bar{c}$.

Solution: Since a, b, c are integers we have that $a \cdot(b \cdot c)=(a \cdot b) \cdot c$. Thus

$$
\bar{a} \cdot(\bar{b} \cdot \bar{c})=\bar{a} \cdot \overline{b \cdot c}=\overline{a \cdot(b \cdot c)}=\overline{(a \cdot b) \cdot c}=\overline{a \cdot b} \cdot \bar{c}=(\bar{a} \cdot \bar{b}) \cdot \bar{c} .
$$

(e) $\bar{a}+(\bar{b}+\bar{c})=(\bar{a}+\bar{b})+\bar{c}$.

Solution: Since a, b, c are integers we have that $a+(b+c)=$ $(a+b)+c$. Thus
$\bar{a}+(\bar{b}+\bar{c})=\bar{a}+\overline{b+c}=\overline{a+(b+c)}=\overline{(a+b)+c}=\overline{a+b}+\bar{c}=(\bar{a}+\bar{b})+\bar{c}$.
12. Prove that 4 does not divide $n^{2}+2$ for any integer n.

Solution: We prove this by contradiction. Suppose that there exists an integer n where 4 divides $n^{2}+2$. Then $n^{2}+2=4 k$ for some integer k. Therefore

$$
\overline{n^{2}+2}=\overline{4 k}
$$

in \mathbb{Z}_{4}. Hence

$$
\bar{n}^{2}+\overline{2}=\overline{4} \cdot \bar{k}
$$

in \mathbb{Z}_{4}. Since $\overline{4}=\overline{0}$ we have that

$$
\bar{n}^{2}+\overline{2}=\overline{0}
$$

Adding $\overline{-2}=\overline{2}$ to both sides we have that

$$
\bar{n}^{2}=\overline{2}
$$

in \mathbb{Z}_{4}. However, this equation is not possible in \mathbb{Z}_{4} since

$$
\begin{aligned}
\overline{0}^{2} & =\overline{0} \\
\overline{1}^{2} & =\overline{1} \\
\overline{2}^{2} & =\overline{0} \\
\overline{3}^{2} & =\overline{1} .
\end{aligned}
$$

13. Prove that $15 x^{2}-7 y^{2}=1$ has no integer solutions.

Solution: We prove this by contradiction. Suppose that x and y are integers with $15 x^{2}-7 y^{2}=1$. Then

$$
\overline{15} \bar{x}^{2}+\overline{-7} \bar{y}^{2}=\overline{1}
$$

in \mathbb{Z}_{3}. Since $\overline{15}=\overline{0}$ and $\overline{-7}=\overline{2}$ in \mathbb{Z}_{3} we have that

$$
\overline{2} \bar{y}^{2}=\overline{1}
$$

Multiplying by $\overline{2}$ on both sides and using the fact that $\overline{2} \cdot \overline{2}=\overline{4}=\overline{1}$ we have that

$$
\bar{y}^{2}=\overline{2} .
$$

However this equation has no solutions in \mathbb{Z}_{3} since

$$
\begin{aligned}
\overline{0}^{2} & =\overline{0} \\
\overline{1}^{2} & =\overline{1} \\
\overline{2}^{2} & =\overline{1} .
\end{aligned}
$$

14. Prove that $x^{2}-5 y^{2}=2$ has no integer solutions.

Solution: We prove this by contradiction. Suppose that x and y are integers with $x^{2}-5 y^{2}=2$. Then in \mathbb{Z}_{5} we have that

$$
\bar{x}^{2}+\overline{-5} \cdot \bar{y}^{2}=\overline{2} .
$$

Since $\overline{-5}=\overline{0}$ in \mathbb{Z}_{5} we have that

$$
\bar{x}^{2}=\overline{2}
$$

However, this equation has no solutions in \mathbb{Z}_{5} since

$$
\begin{aligned}
\overline{0}^{2} & =\overline{0} \\
\overline{1}^{2} & =\overline{1} \\
\overline{2}^{2} & =\overline{4} \\
\overline{3}^{2} & =\overline{4} \\
\overline{4}^{2} & =\overline{1} .
\end{aligned}
$$

15. Prove that the only integer solution to $x^{2}+y^{2}=6 z^{2}$ is $(x, y, z)=$ $(0,0,0)$.

Solution: Suppose by way of contradiction that there was a solution of $x^{2}+y^{2}=6 z^{2}$ where not all x, y, and z are equal to 0 .
If any of x, y, or z is nonzero, then they are all nonzero. Why? Case 1 : Suppose that $x \neq 0$. Then $z^{2}=(1 / 6) x^{2}+(1 / 6) y^{2}>0$. So $z>0$. Then if $y=0$ we would have that $x / z= \pm \sqrt{6}$ which is impossible because $\sqrt{6}$ is irrational. Case 2: Suppose that $y \neq 0$. This is the same as the $x \neq 0$ case. Case 3: If $z \neq 0$ then $0<6 z^{2}=x^{2}+y^{2}$. So one of x or y must not be equal to 0 . Suppose that $x \neq 0$. Then if $y=0$ we would have that $x / z= \pm \sqrt{6}$. So $y \neq 0$. The same thing happens if we started with the assumption that $y \neq 0$.
From the above we can conclude that none of x, y, and z are equal to 0 . We may assume that $\operatorname{gcd}(x, y, z)=1$ for if say $d=\operatorname{gcd}(x, y, z)>0$ then $x=d a, y=d b$, and $z=d c$ where a, b, c are positive integers and by dividing $x^{2}+y^{2}=6 z^{2}$ by d^{2} we get $a^{2}+b^{2}=6 c^{2}$ which is the same equation but with $\operatorname{gcd}(a, b, c)=1$.

If we take $x^{2}+y^{2}=6 z^{2}$ and \bmod by 3 then we get $\bar{x}^{2}+\bar{y}^{2}=\overline{0}$ in \mathbb{Z}_{3}. Note that in \mathbb{Z}_{3} we have that $\overline{0}^{2}=\overline{0}, \overline{1}^{2}=\overline{1}$, and $\overline{2}^{2}=\overline{1}$. Therefore, \bar{x}^{2} can only equal $\overline{0}$ or $\overline{1}$. Similarly for \bar{y}^{2}. Since $\bar{x}^{2}+\bar{y}^{2}=\overline{0}$, if we consider all the combinations then we arrive at the conclusion that $\bar{x}=\overline{0}$ and $\bar{y}=\overline{0}$. Therefore, since this is in \mathbb{Z}_{3} we must have that $x=3 s$ and $y=3 t$ where s and t are integers. Plugging this back into $x^{2}+y^{2}=6 z^{2}$ gives $3\left(s^{2}+t^{2}\right)=2 z^{2}$. Therefore 3 divides $2 z^{2}$. Since $\operatorname{gcd}(3,2)=1$ we must have that 3 divides z^{2}. Since 3 is prime and 3 divides $z \cdot z$ we have that 3 must divide z. But then 3 is a common divisor of x, y, and z. Contradiction.
16. Let $n, x, y \in \mathbb{Z}$ with $n \geq 2$. Consider the elements \bar{x} and \bar{y} in \mathbb{Z}_{n}. Prove:
(a) $\bar{x}=\bar{y}$ if and only if $x \equiv y(\bmod n)$.

Solution: Suppose that $\bar{x}=\bar{y}$. By definition

$$
\bar{x}=\{t \in \mathbb{Z} \mid t \equiv x(\bmod n)\} .
$$

Since $x \equiv x(\bmod n)$ we have that $x \in \bar{x}$. Therefore, $x \in \bar{y}$ because
$\bar{x}=\bar{y}$. By definition

$$
\bar{y}=\{z \in \mathbb{Z} \mid z \equiv y(\bmod n)\} .
$$

Hence $x \equiv y(\bmod n)$.
Conversely, suppose that $x \equiv y(\bmod n)$. We now show that $\bar{x}=\bar{y}$. Let us begin by showing that $\bar{x} \subseteq \bar{y}$. Let $z \in \bar{x}$. By definition

$$
\bar{x}=\{t \in \mathbb{Z} \mid t \equiv x(\bmod n)\} .
$$

Thus, $z \equiv x(\bmod n)$. Since $z \equiv x(\bmod n)$ and $x \equiv y(\bmod n)$ we have that $z \equiv y(\bmod n)$. Thus $z \in \bar{y}$. Therefore $\bar{x} \subseteq \bar{y}$. A similar argument shows that $\bar{y} \subseteq \bar{x}$. Therefore, $\bar{x}=\bar{y}$.
(b) Either $\bar{x} \cap \bar{y}=\emptyset$ or $\bar{x}=\bar{y}$.

Solution: If $\bar{x} \cap \bar{y}=\emptyset$, then we are done. Suppose that $\bar{x} \cap$ $\bar{y} \neq \emptyset$. Then there exists $z \in \bar{x} \cap \bar{y}$. Since $z \in \bar{x}$ we have that $z \equiv x(\bmod n)$. Since $z \in \bar{y}$ we have that $z \equiv y(\bmod n)$. Therefore, $x \equiv z(\bmod n)$ and $z \equiv y(\bmod n)$ which gives us that $x \equiv y(\bmod n)$. By exercise (16a) we have that $\bar{x}=\bar{y}$.
17. Prove that if a positive integer $x>1$ ends in a 7 then it is not a square. For example, $x=137$ is not a square.
Solution 1: Let x be a positive integer that ends in a 7 .
Then in $\bar{x}=\overline{7}$ in \mathbb{Z}_{10}.
For example, $\overline{137}=\overline{130}+\overline{7}=\overline{0}+\overline{7}=\overline{7}$ in \mathbb{Z}_{10}.
Suppose by way of contradiction that x is a square, that is $x=k^{2}$ where k is an integer.
Then $\bar{k}^{2}=\bar{x}=\overline{7}$ in \mathbb{Z}_{10}.
But this can't happen for if we look at all the possible cases for what \bar{k} can be in \mathbb{Z}_{10} we get that
$\overline{0}^{2}=\overline{0}$,
$\overline{1}^{2}=\overline{1}$,
$\overline{2}^{2}=\overline{4}$,
$\overline{3}^{2}=\overline{9}$,
$\overline{4}^{2}=\overline{16}=\overline{6}$,
$\overline{5}^{2}=\overline{25}=\overline{5}$,
$\overline{6}^{2}=\overline{36}=\overline{6}$,
$\overline{7}^{2}=\overline{49}=\overline{9}$,
$\overline{8}^{2}=\overline{64}=\overline{4}$,
and
$\overline{9}^{2}=\overline{81}=\overline{1}$.
Therefore, there is no \bar{k} in \mathbb{Z}_{10} with $\bar{k}^{2}=\overline{7}$.
Hence, x cannot be a square.

Solution 2: Another way to do this is the same as above but use \mathbb{Z}_{5} instead of \mathbb{Z}_{10}
If x is a positive integer that ends in a 7 then $\bar{x}=\overline{2}$ in \mathbb{Z}_{5}.
For example, $\overline{137}=\overline{135}+\overline{2}=\overline{0}+\overline{2}=\overline{2}$ in \mathbb{Z}_{5}.
Suppose by way of contradiction that x is a square, that is $x=k^{2}$ where k is an integer.
Then $\bar{k}^{2}=\bar{x}=\overline{2}$ in \mathbb{Z}_{5}.
But this can't happen for if we look at all the possible cases for what \bar{k} can be in \mathbb{Z}_{5} we get that
$\overline{0}^{2}=\overline{0}$,
$\overline{1}^{2}=\overline{1}$,
$\overline{2}^{2}=\overline{4}$,
$\overline{3}^{2}=\overline{9}=\overline{4}$,
and
$\overline{4}^{2}=\overline{16}=\overline{1}$.
Therefore, there is no \bar{k} in \mathbb{Z}_{5} with $\bar{k}^{2}=\overline{2}$.
Hence, x cannot be a square.

