Math 4570 - Homework # 4 The Matrix of a Linear Transformation

- 1. Consider the vector space $V = \mathbb{R}^3$ over the field $F = \mathbb{R}$. Let $\beta = [(1,0,0), (0,1,0), (0,0,1)]$ and $\beta' = [(1,0,1), (1,2,1), (0,0,1)]$. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(a,b,c) = (a+b,c,-a).
 - (a) Calculate $[T]_{\beta}$
 - (b) Calculate $[T]_{\beta'}$
 - (c) Calculate $[T]^{\beta}_{\beta'}$
 - (d) Let x = (1, -2, 4). Calculate $[x]_{\beta}$ and $[x]_{\beta'}$
 - (e) Verify that $[T(x)]_{\beta} = [T]_{\beta}[x]_{\beta}$
 - (f) Verify that $[T(x)]_{\beta'} = [T]_{\beta'}[x]_{\beta'}$
 - (g) Verify that $[T(x)]_{\beta} = [T]^{\beta}_{\beta'}[x]_{\beta'}$
 - (h) Calculate the change of coordinate matrix $[I]^{\beta}_{\beta'}$.
 - (i) Use x from above and show that $[I]^{\beta}_{\beta'}[x]_{\beta'} = [x]_{\beta}$
 - (j) Calculate the change of coordinate matrix $[I]^{\beta'}_{\beta}$.
 - (k) Use x from above and show that $[I]^{\beta'}_{\beta}[x]_{\beta} = [x]_{\beta'}$
 - (1) Show that $([I]_{\beta'}^{\beta})^{-1} = [I]_{\beta}^{\beta'}$
 - (m) Show that $[T]^{\beta}_{\beta'}[I]^{\beta'}_{\beta} = [T]_{\beta}$
 - (n) Show that $[T]_{\beta'} = [I]^{\beta'}_{\beta}[T]_{\beta}[I]^{\beta}_{\beta'}$
- 2. Let V and W be finite-dimensional vector spaces over a field F. Let β and γ be ordered bases for V and W respectively. Let $T: V \to W$ and $S: V \to W$ be linear transformations. Let $\alpha \in F$.
 - (a) $[T+S]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [S]^{\gamma}_{\beta}$
 - (b) $[\alpha T]^{\gamma}_{\beta} = \alpha [T]^{\gamma}_{\beta}$
- 3. Let V, W, and Z be finite-dimensional vector spaces over a field F with ordered bases α , β , and γ , respectively. Let $T : V \to W$ and $U: W \to Z$ be linear transformations.

- (a) The composition $U \circ T : V \to Z$ is a linear transformation
- (b) $[U \circ T]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$
- 4. Let V and W be finite-dimensional vector spaces over a field F with ordered bases α and β , respectively. Let $T_1: V \to W$ and $T_2: V \to W$ be linear transformations. If $[T_1]^{\beta}_{\alpha} = [T_2]^{\beta}_{\alpha}$, then $T_1 = T_2$.
- 5. Let F be a field. Let $A \in M_{n,n}(F)$ so that A is a square matrix. Recall that $L_A : F^n \to F^n$ given by left matrix multiplication $L_A(x) = Ax$ is a linear transformation.
 - (a) Let $\beta = [v_1, v_2, \dots, v_n]$ be the standard basis for F^n . That is, v_i is the vector with zeros in every spot except for a 1 in the *i*-th spot. Then $[L_A]_{\beta} = A$.
 - (b) L_A is invertible iff A is invertible.
 - (c) Let $\gamma = [w_1, w_2, \dots, w_n]$ be any ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$ where Q is the $n \times n$ matrix whose *i*-th column is w_i , that is, $Q = (w_1|w_2|\cdots|w_n)$.