Math 4570 - Homework \# 4 The Matrix of a Linear Transformation

1. Consider the vector space $V=\mathbb{R}^{3}$ over the field $F=\mathbb{R}$. Let $\beta=$ $[(1,0,0),(0,1,0),(0,0,1)]$ and $\beta^{\prime}=[(1,0,1),(1,2,1),(0,0,1)]$. Let T : $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(a, b, c)=(a+b, c,-a)$.
(a) Calculate $[T]_{\beta}$
(b) Calculate $[T]_{\beta^{\prime}}$
(c) Calculate $[T]_{\beta^{\prime}}^{\beta}$
(d) Let $x=(1,-2,4)$. Calculate $[x]_{\beta}$ and $[x]_{\beta^{\prime}}$
(e) Verify that $[T(x)]_{\beta}=[T]_{\beta}[x]_{\beta}$
(f) Verify that $[T(x)]_{\beta^{\prime}}=[T]_{\beta^{\prime}}[x]_{\beta^{\prime}}$
(g) Verify that $[T(x)]_{\beta}=[T]_{\beta^{\prime}}^{\beta}[x]_{\beta^{\prime}}$
(h) Calculate the change of coordinate matrix $[I]_{\beta^{\prime}}^{\beta}$.
(i) Use x from above and show that $[I]_{\beta^{\prime}}^{\beta}[x]_{\beta^{\prime}}=[x]_{\beta}$
(j) Calculate the change of coordinate matrix $[I]_{\beta}^{\beta^{\prime}}$.
(k) Use x from above and show that $[I]_{\beta}^{\beta^{\prime}}[x]_{\beta}=[x]_{\beta^{\prime}}$
(l) Show that $\left([I]_{\beta^{\prime}}^{\beta}\right)^{-1}=[I]_{\beta}^{\beta^{\prime}}$
(m) Show that $[T]_{\beta^{\prime}}^{\beta}[I]_{\beta}^{\beta^{\prime}}=[T]_{\beta}$
(n) Show that $[T]_{\beta^{\prime}}=[I]_{\beta}^{\beta^{\prime}}[T]_{\beta}[I]_{\beta^{\prime}}^{\beta}$
2. Let V and W be finite-dimensional vector spaces over a field F. Let β and γ be ordered bases for V and W respectively. Let $T: V \rightarrow W$ and $S: V \rightarrow W$ be linear transformations. Let $\alpha \in F$.
(a) $[T+S]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[S]_{\beta}^{\gamma}$
(b) $[\alpha T]_{\beta}^{\gamma}=\alpha[T]_{\beta}^{\gamma}$
3. Let V, W, and Z be finite-dimensional vector spaces over a field F with ordered bases α, β, and γ, respectively. Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.
(a) The composition $U \circ T: V \rightarrow Z$ is a linear transformation
(b) $[U \circ T]_{\alpha}^{\gamma}=[U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}$
4. Let V and W be finite-dimensional vector spaces over a field F with ordered bases α and β, respectively. Let $T_{1}: V \rightarrow W$ and $T_{2}: V \rightarrow W$ be linear transformations. If $\left[T_{1}\right]_{\alpha}^{\beta}=\left[T_{2}\right]_{\alpha}^{\beta}$, then $T_{1}=T_{2}$.
5. Let F be a field. Let $A \in M_{n, n}(F)$ so that A is a square matrix. Recall that $L_{A}: F^{n} \rightarrow F^{n}$ given by left matrix multiplication $L_{A}(x)=A x$ is a linear transformation.
(a) Let $\beta=\left[v_{1}, v_{2}, \ldots, v_{n}\right]$ be the standard basis for F^{n}. That is, v_{i} is the vector with zeros in every spot except for a 1 in the i-th spot. Then $\left[L_{A}\right]_{\beta}=A$.
(b) L_{A} is invertible iff A is invertible.
(c) Let $\gamma=\left[w_{1}, w_{2}, \ldots, w_{n}\right]$ be any ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$ where Q is the $n \times n$ matrix whose i-th column is w_{i}, that is, $Q=\left(w_{1}\left|w_{2}\right| \cdots \mid w_{n}\right)$.
