Math 465 - Homework # 4 Continuity

- 1. Use the ϵ - δ definition of continuity to prove that $f(x) = x^2 1$ is continuous at a = 2.
- 2. Use the ϵ - δ definition of continuity to prove that $f(x) = 3x^2 + 1$ is continuous at a = 1.
- 3. Use the ϵ - δ definition of continuity to prove that $f(x) = x^4$ is continuous at every real number $a \ge 0$.

4. Use the ϵ - δ definition of continuity to prove that $f(x) = \frac{1}{x^2}$ is continuous at every $a \in \mathbb{R}$ with $a \neq 0$.

- 5. Use the ϵ - δ definition of continuity to prove that $f(x) = \sqrt{x}$ is continuous at every $a \in \mathbb{R}$ with a > 0.
- 6. Prove the following.
 - (a) Prove that f(x) = x is continuous on all of \mathbb{R} .
 - (b) Let α be a constant real number. Prove that the constant function $f(x) = \alpha$ is continuous for all of \mathbb{R} .
 - (c) Prove that polynomials are continuous on all of \mathbb{R} .
- 7. (This problem shows how you can pull a limit inside of a continuous function.) Let $f: D \to \mathbb{R}$ be a continuous function where D is a subset of \mathbb{R} .
 - (a) Suppose that (a_n) is a sequence of real numbers with $\lim_{n \to \infty} a_n = L$ where $a_n \in D$ for all $n \in \mathbb{N}$ and $L \in D$. Prove that

$$\lim_{n \to \infty} f(a_n) = f\left(\lim_{n \to \infty} a_n\right) = f(L)$$

(b) Suppose that $g : A \to \mathbb{R}$ where A is a subset of \mathbb{R} and suppose that the range of g is contained in D. Suppose that $a \in A$ and $\lim_{x \to a} g(x) = L$ with $L \in D$. Prove that

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) = f(L)$$