Math 465 - Homework \# 4 Continuity

1. Use the $\epsilon-\delta$ definition of continuity to prove that $f(x)=x^{2}-1$ is continuous at $a=2$.
2. Use the $\epsilon-\delta$ definition of continuity to prove that $f(x)=3 x^{2}+1$ is continuous at $a=1$.
3. Use the $\epsilon-\delta$ definition of continuity to prove that $f(x)=x^{4}$ is continuous at every real number $a \geq 0$.
4. Use the $\epsilon-\delta$ definition of continuity to prove that $f(x)=\frac{1}{x^{2}}$ is continuous at every $a \in \mathbb{R}$ with $a \neq 0$.
5. Use the $\epsilon-\delta$ definition of continuity to prove that $f(x)=\sqrt{x}$ is continuous at every $a \in \mathbb{R}$ with $a>0$.
6. Prove the following.
(a) Prove that $f(x)=x$ is continuous on all of \mathbb{R}.
(b) Let α be a constant real number. Prove that the constant function $f(x)=\alpha$ is continuous for all of \mathbb{R}.
(c) Prove that polynomials are continous on all of \mathbb{R}.
7. (This problem shows how you can pull a limit inside of a continuous function.) Let $f: D \rightarrow \mathbb{R}$ be a continuous function where D is a subset of \mathbb{R}.
(a) Suppose that $\left(a_{n}\right)$ is a sequence of real numbers with $\lim _{n \rightarrow \infty} a_{n}=L$ where $a_{n} \in D$ for all $n \in \mathbb{N}$ and $L \in D$. Prove that

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)
$$

(b) Suppose that $g: A \rightarrow \mathbb{R}$ where A is a subset of \mathbb{R} and suppose that the range of g is contained in D. Suppose that $a \in A$ and $\lim _{x \rightarrow a} g(x)=L$ with $L \in D$. Prove that

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(L)
$$

