Math 5800

Homework # 4

Step functions

1. Do the following for each step function below: (i) draw a picture of the step function, (ii) express the step function in a representation that involves only disjoint intervals, and (iii) find the integral of the step function.

(a)
$$f = 2 \cdot \chi_{[0,4)} + 3 \cdot \chi_{[1,3)} - 4 \cdot \chi_{(2,4)}$$

(b)
$$g = -2 \cdot \chi_{[-1,2)} + 5 \cdot \chi_{[1,3]}$$

(c)
$$h = 2 \cdot \chi_{[-4,4)} + 4\pi \cdot \chi_{(-1,-1)} + -3 \cdot \chi_{[0,0]} + \chi_{[2,2]}$$

- 2. Let $S, T \subseteq \mathbb{R}$ with $S \subseteq T$. Prove that $\chi_S(x) \leq \chi_T(x)$ for all $x \in \mathbb{R}$.
- 3. Let $S_1, S_2, \ldots, S_n \subseteq \mathbb{R}$. Let $S = \bigcup_{k=1}^n S_k$. Prove that

$$\chi_{\scriptscriptstyle S}(x) \leq \sum_{k=1}^n \chi_{\scriptscriptstyle S_k}(x)$$

for all $x \in \mathbb{R}$.

4. Let $S, A_1, A_2, \ldots, A_r \subseteq \mathbb{R}$. Suppose the A_i are disjoint sets, that is, suppose that $A_k \cap A_j = \emptyset$ if $k \neq j$.

Prove that $S = A_1 \cup A_2 \cup \ldots \cup A_r$ if and only if

$$\chi_{\scriptscriptstyle S} = \chi_{\scriptscriptstyle A_1} + \chi_{\scriptscriptstyle A_2} + \ldots + \chi_{\scriptscriptstyle A_r}$$

- 5. (a) If f is a step function, prove that |f| is a step function. Here |f|(x) = |f(x)|.
 - (b) Given two step functions χ_1 and χ_2 define a new function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \max\{\chi_1(x), \chi_2(x)\}$ for each $x \in \mathbb{R}$. Prove that f is a step function.
 - (c) Given two step functions χ_1 and χ_2 define a new function $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \min\{\chi_1(x), \chi_2(x)\}$ for each $x \in \mathbb{R}$. Prove that f is a step function.

Hint: For parts (b) and (c) these formulas will be helpful:

$$max\{\chi_1, \chi_2\} = \frac{1}{2} \chi_1 + \frac{1}{2} \chi_2 + \frac{1}{2} |\chi_1 - \chi_2|$$

and

$$\min\{\chi_1,\chi_2\} = \frac{1}{2} \chi_1 + \frac{1}{2} \chi_2 - \frac{1}{2} |\chi_1 - \chi_2|$$

6. Given a function $f: \mathbb{R} \to \mathbb{R}$, define $f^+: \mathbb{R} \to \mathbb{R}$ as

$$f^{+}(x) = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ 0 & \text{if } f(x) < 0 \end{cases}$$

- (a) Let $g = 2\chi_{[0,2)} 4\chi_{(-2,-1]} 3\chi_{[-3,-3]} + \chi_{(3,4]}$. Find g^+ and draw a picture of g^+ .
- (b) Prove that if f is a step function, then f^+ is a step function.

- 7. Recall that \mathscr{R} denotes the set of all subsets S of \mathbb{R} such that S can be written as $S = I_1 \cup I_2 \cup \ldots \cup I_r$ where I_1, I_2, \ldots, I_r are disjoint bounded intervals.
 - (a) $S \in \mathcal{R}$ if and only if χ_S is a step function.
 - (b) If $S, T \in \mathcal{R}$, then $S \cup T, S \cap T, S T$ are all in \mathcal{R} .
 - (c) If $S, T \in \mathcal{R}$ and $S \subseteq T$, then $\ell(S) \leq \ell(T)$
 - (d) If $A = \bigcup_{i=1}^{s} A_i$ where each A_i is a bounded interval, then $A \in \mathcal{R}$
 - (e) Let I_1, I_2, \ldots, I_r be disjoint bounded intervals. Suppose that there exist bounded intervals J_1, J_2, \ldots, J_t where $\bigcup_{j=1}^r I_j \subseteq \bigcup_{i=1}^t J_i$. Prove

that
$$\sum_{j=1}^{r} \ell(I_j) \leq \sum_{i=1}^{t} \ell(J_i)$$
.

Hint for (b):

$$\chi_{\scriptscriptstyle S\cup T} = \max\{\chi_{\scriptscriptstyle S},\chi_{\scriptscriptstyle T}\} \quad \chi_{\scriptscriptstyle S\cap T} = \min\{\chi_{\scriptscriptstyle S},\chi_{\scriptscriptstyle T}\} \quad \chi_{\scriptscriptstyle S-T} = (\chi_{\scriptscriptstyle S}-\chi_{\scriptscriptstyle T})^+$$