Math 5800
 Homework \# 4
 Step functions

1. Do the following for each step function below: (i) draw a picture of the step function, (ii) express the step function in a representation that involves only disjoint intervals, and (iii) find the integral of the step function.
(a) $f=2 \cdot \chi_{[0,4)}+3 \cdot \chi_{[1,3)}-4 \cdot \chi_{(2,4)}$
(b) $g=-2 \cdot \chi_{[-1,2)}+5 \cdot \chi_{[1,3]}$
(c) $h=2 \cdot \chi_{[-4,4)}+4 \pi \cdot \chi_{(-1,-1)}+-3 \cdot \chi_{[0,0]}+\cdot \chi_{[2,2]}$
2. Let $S, T \subseteq \mathbb{R}$ with $S \subseteq T$. Prove that $\chi_{S}(x) \leq \chi_{T}(x)$ for all $x \in \mathbb{R}$.
3. Let $S_{1}, S_{2}, \ldots, S_{n} \subseteq \mathbb{R}$. Let $S=\cup_{k=1}^{n} S_{k}$. Prove that

$$
\chi_{S}(x) \leq \sum_{k=1}^{n} \chi_{S_{k}}(x)
$$

for all $x \in \mathbb{R}$.
4. Let $S, A_{1}, A_{2}, \ldots, A_{r} \subseteq \mathbb{R}$. Suppose the A_{i} are disjoint sets, that is, suppose that $A_{k} \cap A_{j}=\emptyset$ if $k \neq j$.
Prove that $S=A_{1} \cup A_{2} \cup \ldots \cup A_{r}$ if and only if

$$
\chi_{S}=\chi_{A_{1}}+\chi_{A_{2}}+\ldots+\chi_{A_{r}}
$$

5. (a) If f is a step function, prove that $|f|$ is a step function. Here $|f|(x)=|f(x)|$.
(b) Given two step functions χ_{1} and χ_{2} define a new function $f: \mathbb{R} \rightarrow$ \mathbb{R} by $f(x)=\max \left\{\chi_{1}(x), \chi_{2}(x)\right\}$ for each $x \in \mathbb{R}$. Prove that f is a step function.
(c) Given two step functions χ_{1} and χ_{2} define a new function $f: \mathbb{R} \rightarrow$ \mathbb{R} by $f(x)=\min \left\{\chi_{1}(x), \chi_{2}(x)\right\}$ for each $x \in \mathbb{R}$. Prove that f is a step function.

Hint: For parts (b) and (c) these formulas will be helpful:

$$
\max \left\{\chi_{1}, \chi_{2}\right\}=\frac{1}{2} \chi_{1}+\frac{1}{2} \chi_{2}+\frac{1}{2}\left|\chi_{1}-\chi_{2}\right|
$$

and

$$
\min \left\{\chi_{1}, \chi_{2}\right\}=\frac{1}{2} \chi_{1}+\frac{1}{2} \chi_{2}-\frac{1}{2}\left|\chi_{1}-\chi_{2}\right|
$$

6. Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, define $f^{+}: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f^{+}(x)=\left\{\begin{array}{cl}
f(x) & \text { if } f(x) \geq 0 \\
0 & \text { if } f(x)<0
\end{array}\right.
$$

(a) Let $g=2 \chi_{[0,2)}-4 \chi_{(-2,-1]}-3 \chi_{[-3,-3]}+\chi_{(3,4]}$.

Find g^{+}and draw a picture of g^{+}.
(b) Prove that if f is a step function, then f^{+}is a step function.
7. Recall that \mathscr{R} denotes the set of all subsets S of \mathbb{R} such that S can be written as $S=I_{1} \cup I_{2} \cup \ldots \cup I_{r}$ where $I_{1}, I_{2}, \ldots, I_{r}$ are disjoint bounded intervals.
(a) $S \in \mathscr{R}$ if and only if χ_{S} is a step function.
(b) If $S, T \in \mathscr{R}$, then $S \cup T, S \cap T, S-T$ are all in \mathscr{R}.
(c) If $S, T \in \mathscr{R}$ and $S \subseteq T$, then $\ell(S) \leq \ell(T)$
(d) If $A=\bigcup_{i=1}^{s} A_{i}$ where each A_{i} is a bounded interval, then $A \in \mathscr{R}$
(e) Let $I_{1}, I_{2}, \ldots, I_{r}$ be disjoint bounded intervals. Suppose that there exist bounded intervals $J_{1}, J_{2}, \ldots, J_{t}$ where $\bigcup_{j=1}^{r} I_{j} \subseteq \bigcup_{i=1}^{t} J_{i}$. Prove that $\sum_{j=1}^{r} \ell\left(I_{j}\right) \leq \sum_{i=1}^{t} \ell\left(J_{i}\right)$.

Hint for (b):

$$
\chi_{S \cup T}=\max \left\{\chi_{S}, \chi_{T}\right\} \quad \chi_{S \cap T}=\min \left\{\chi_{S}, \chi_{T}\right\} \quad \chi_{S-T}=\left(\chi_{S}-\chi_{T}\right)^{+}
$$

