Math 2550 HW 4 - Part 2 Inverses

1. Given that the system

has no solution, determine whether or not the matrix

$$A = \begin{pmatrix} 2 & -4 & 5\\ -1 & 0 & 1\\ 1 & -4 & 6 \end{pmatrix}$$

is invertible. Explain why your answer is correct.

- 2. Suppose that A, B, P, Q are all n × n matrices.
 Suppose that B² = I.
 Suppose that A = PBQ and that P and Q are inverses.
 Prove that A² = I
- 3. Let A be a 3×3 matrix.

Let O be the 3×3 zero matrix. Let I be the 3×3 identity matrix. Suppose that $A^3 = O$. Prove that I - A is invertible and that $(I - A)^{-1} = I + A + A^2$.

4. Let A, C, D be $n \times n$ matrices.

Let I be the $n \times n$ identity matrix. Suppose that CA = I and AD = I. Prove that C = D.

- 5. Suppose that A is an $n \times n$ matrix. Let \vec{y} and \vec{z} be in \mathbb{R}^n . Suppose that $\vec{y} \neq \vec{z}$. Suppose that $A\vec{y} = A\vec{z}$. Prove that A is not invertible.
- 6. Suppose that A is an n × n matrix and b is in ℝⁿ.
 Suppose that the equation Ax = b has infinitely many solutions for x.
 Does A⁻¹ exist?