Math 2550 HW 4 - Part 2
 Inverses

1. Given that the system

$$
\begin{aligned}
2 x_{1}-4 x_{2} & +5 x_{3}=4 \\
-x_{1} & +x_{3}=2 \\
x_{1}-4 x_{2} & +6 x_{3}=7
\end{aligned}
$$

has no solution, determine whether or not the matrix

$$
A=\left(\begin{array}{ccc}
2 & -4 & 5 \\
-1 & 0 & 1 \\
1 & -4 & 6
\end{array}\right)
$$

is invertible. Explain why your answer is correct.
2. Suppose that A, B, P, Q are all $n \times n$ matrices.

Suppose that $B^{2}=I$.
Suppose that $A=P B Q$ and that P and Q are inverses.
Prove that $A^{2}=I$
3. Let A be a 3×3 matrix.

Let O be the 3×3 zero matrix.
Let I be the 3×3 identity matrix.
Suppose that $A^{3}=O$.
Prove that $I-A$ is invertible and that $(I-A)^{-1}=I+A+A^{2}$.
4. Let A, C, D be $n \times n$ matrices.

Let I be the $n \times n$ identity matrix.
Suppose that $C A=I$ and $A D=I$.
Prove that $C=D$.
5. Suppose that A is an $n \times n$ matrix.

Let \vec{y} and \vec{z} be in \mathbb{R}^{n}.
Suppose that $\vec{y} \neq \vec{z}$.
Suppose that $A \vec{y}=A \vec{z}$.
Prove that A is not invertible.
6. Suppose that A is an $n \times n$ matrix and \vec{b} is in \mathbb{R}^{n}.

Suppose that the equation $A \vec{x}=\vec{b}$ has infinitely many solutions for \vec{x}. Does A^{-1} exist?

