## Math 5680

Homework \# 4 - Part 2

## More on Laurent series and residues

1. Each function $f$ below has an isolated singularity the point $z_{0}$ that is given. For each problem do the following: (i) Classify the singularity as removable, a pole of order $k$, or an essential singularity, and (ii) find the residue of $f$ at $z_{0}$.
(a) $f(z)=\frac{e^{z}-1}{\sin (z)}$, at $z_{0}=0$
(b) $f(z)=\frac{1}{e^{z}-1}$, at $z_{0}=0$
(c) $f(z)=\frac{z+2}{z^{2}-2 z}$, at $z_{0}=0$
(d) $f(z)=\frac{e^{z}}{\left(z^{2}-1\right)^{2}}$, at $z_{0}=1$
(e) $f(z)=\frac{e^{z^{2}}}{(z-1)^{4}}$, at $z_{0}=1$
(f) $f(z)=\frac{z^{2}}{z^{4}-1}$, at $z_{0}=i$
(g) $f(z)=\left(\frac{\cos (z)-1}{z}\right)^{2}$, at $z_{0}=0$
2. Find all the singular points and residues of $f(z)=\frac{1}{e^{z}-1}$.
3. Find all the singular points and residues of $f(z)=\frac{1}{z^{3}-3}$.
4. Suppose that $f_{1}$ and $f_{2}$ both have simple poles at $z_{0}$. Prove that $f_{1} \cdot f_{2}$ has a pole of order 2 at $z_{0}$ and find a formula for the residue at $z_{0}$.
