Math 5680 Homework # 4 - Part 2 More on Laurent series and residues

- 1. Each function f below has an isolated singularity the point z_0 that is given. For each problem do the following: (i) Classify the singularity as removable, a pole of order k, or an essential singularity, and (ii) find the residue of f at z_0 .
 - (a) $f(z) = \frac{e^z 1}{\sin(z)}$, at $z_0 = 0$
 - (b) $f(z) = \frac{1}{e^z 1}$, at $z_0 = 0$
 - (c) $f(z) = \frac{z+2}{z^2 2z}$, at $z_0 = 0$
 - (d) $f(z) = \frac{e^z}{(z^2 1)^2}$, at $z_0 = 1$
 - (e) $f(z) = \frac{e^{z^2}}{(z-1)^4}$, at $z_0 = 1$

(f)
$$f(z) = \frac{z^2}{z^4 - 1}$$
, at $z_0 = i$

(g)
$$f(z) = \left(\frac{\cos(z) - 1}{z}\right)^2$$
, at $z_0 = 0$

- 2. Find all the singular points and residues of $f(z) = \frac{1}{e^z 1}$.
- 3. Find all the singular points and residues of $f(z) = \frac{1}{z^3 3}$.
- 4. Suppose that f_1 and f_2 both have simple poles at z_0 . Prove that $f_1 \cdot f_2$ has a pole of order 2 at z_0 and find a formula for the residue at z_0 .