Math 5680
 Homework \# 4 - Part 1
 Laurent series and residues

1. For each part, do the following: (i) Draw a picture of A, (ii) find the Laurent series expansion for $f(z)$ around z_{0} in the indicated region A, (iii) what kind of singularity is it at z_{0} ?, and (iv) what is the residue at z_{0} ?
(a) $f(z)=\frac{1}{z(z+1)}, z_{0}=0, A=\{z|0<|z|<1\}$
(b) $f(z)=\frac{z}{(z+1)}, z_{0}=0, A=\{z|0<|z|<1\}$
(c) $f(z)=\frac{3 e^{z}}{z^{2}}, z_{0}=0, A=\{z|0<|z|\}=\mathbb{C}-\{0\}$
2. Answer the same questions as in problem 1, but in this one you figure out what A will be.
(a) $f(z)=\frac{z}{(z+1)}, z_{0}=-1$
3. Find the Laurent series for $f(z)=\frac{1}{z(z+1)}$ inside of $A=\{z|1<|z|\}$.
4. (a) Expand $f(z)=\frac{1}{z(z-1)(z-2)}$ into a Laurent series in the region $A=\{z|0<|z|<1\}$.
(b) Expand the same function in the region $B=\{z|1<|z|<2\}$.
5. Expand $f(z)=\frac{1}{z^{2}(1-z)}$, into a Laurent series in the region $A=$ $\left\{z|0<|z-1|<1\}\right.$. Classify the pole and give the residue at $z_{0}=1$.
6. Find the Laurent series for $f(z)=\frac{z+1}{z^{3}\left(z^{2}+1\right)}$ on the region $A=$ $\left\{z|0<|z|<1\}\right.$. Calculate the residue at $z_{0}=0$.
7. Consider the Laurent series of $f(z)=\frac{e^{1 / z}}{(1-z)}$ in the region $A=$ $\left\{z|0<|z|<1\}\right.$. Compute the terms b_{2}, b_{1}, a_{0}, and a_{1} of the series.
8. Classify the pole of the function at z_{0}.
(a) $f(z)=\frac{1}{(1-z)^{2}}, z_{0}=1$
(b) $f(z)=\frac{\sin (z-1)}{z^{2}}, z_{0}=0$
9. Consider the function $f(z)=1 /\left(e^{z}-1\right)$. Show that f has a simple pole at $z_{0}=0$. Find the first few terms of the Laurent series b_{1}, a_{0}, and a_{1}.
10. Find the residue of f at z_{0}.
(a) $f(z)=\frac{1}{z^{2}-1}, z_{0}=1$
(b) $f(z)=\frac{z}{z^{2}-1}, z_{0}=1$
(c) $f(z)=\frac{e^{z}-1}{z^{2}}, z_{0}=0$
(d) $f(z)=\frac{e^{z}-1}{z}, z_{0}=0$
11. Suppose that f is analytic at z_{0} and has a zero of multiplicity k at z_{0}. Show that the residue of $g(z)=\frac{f^{\prime}(z)}{f(z)}$ at z_{0} is k.
