Math 446 - Homework \# 4

1. Are the following statements true or false?
(a) $3 \equiv 5(\bmod 2)$
(b) $11 \equiv-5(\bmod 5)$
(c) $-31 \not \equiv 10(\bmod 3)$
(d) $100 \equiv 12(\bmod 4)$
2. Prove the following: If x, y, z, a, b, n are integers with $n \geq 2$ then the following are true:
(a) $x \equiv x(\bmod n)$
(b) If $x \equiv y(\bmod n)$, then and $y \equiv x(\bmod n)$.
(c) If $x \equiv y(\bmod n)$ and $y \equiv z(\bmod n)$, then $x \equiv z(\bmod n)$.
(d) If $a \equiv b(\bmod n)$ and $x \equiv y(\bmod n)$, then $a+x \equiv b+y(\bmod n)$.
(e) If $a \equiv b(\bmod n)$ and $x \equiv y(\bmod n)$, then $a x \equiv b y(\bmod n)$.
(f) We have that $x \equiv y(\bmod n)$ if and only if $x=y+k n$ for some integer k.
3. In \mathbb{Z}_{4}, list ten elements from each of the following equivalence classes: $\overline{0}, \overline{-3}, \overline{2}, \overline{5}$.
4. Answer the following questions.
(a) Is $\overline{0}=\overline{8}$ in \mathbb{Z}_{4} ?
(b) Is $\overline{-10}=\overline{-2}$ in \mathbb{Z}_{5} ?
(c) Is $\overline{1}=\overline{13}$ in \mathbb{Z}_{6} ?
(d) Is $\overline{2}=\overline{52}$ in \mathbb{Z}_{4} ?
(e) Is $\overline{-5}=\overline{19}$ in \mathbb{Z}_{4} ?
5. Answer the following questions where the elements are from \mathbb{Z}_{8}.
(a) Is $\overline{0}=\overline{12}$?
(b) Is $\overline{-2}=\overline{14}$?
(c) Is $\overline{-51}=\overline{-109}$?
(d) Is $\overline{3}=\overline{43}$?
6. Consider $\mathbb{Z}_{7}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Calculate the following. For each answer \bar{x} that you calculate, reduce it so that $0 \leq x \leq 6$.
(a) $\overline{2}+\overline{6}$
(b) $\overline{3}+\overline{4}$
(c) $\overline{1473}$
(d) $\overline{3} \cdot \overline{5}$
(e) $\overline{2} \cdot \overline{3}+\overline{4} \cdot \overline{6}$
(f) $\overline{5} \cdot \overline{2}+\overline{1}+\overline{2} \cdot \overline{4} \cdot \overline{6}$
7. Consider $\mathbb{Z}_{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Calculate the following. For each answer \bar{x} that you calculate, reduce it so that $0 \leq x \leq 3$.
(a) $\overline{2}+\overline{3}$
(b) $\overline{1}+\overline{3}$
(c) $\overline{4630}$
(d) $\overline{3} \cdot \overline{2}$
(e) $\overline{2} \cdot \overline{2}+\overline{3} \cdot \overline{3}$
(f) $\overline{3} \cdot \overline{2}+\overline{1}+\overline{2}+\overline{2} \cdot \overline{2} \cdot \overline{2}$
8. Suppose that x is an odd integer.
(a) Prove that $\bar{x}=\overline{1}$ or $\bar{x}=\overline{3}$ in \mathbb{Z}_{4}.
(b) Prove that $\bar{x}^{2}=\overline{1}$ in \mathbb{Z}_{4}.
9. (a) Let p be a prime and x and y be integers. Suppose that $\overline{x y}=\overline{0}$ in \mathbb{Z}_{p}. Prove that either $\bar{x}=\overline{0}$ or $\bar{y}=\overline{0}$.
(b) Give an example where n is not prime with $\overline{x y}=\overline{0}$ but $\bar{x} \neq \overline{0}$ and $\bar{y} \neq \overline{0}$.
10. Let p be a prime. Suppose that $x^{2} \equiv y^{2}(\bmod p)$. Prove that either $p \mid(x+y)$ or $p \mid(x-y)$.
11. Let n be an integer with $n \geq 2$. Let $\bar{a}, \bar{b}, \bar{c} \in \mathbb{Z}_{n}$. Prove the following. (You will need to use the corresponding properties of the integers.)
(a) $\bar{a} \cdot \bar{b}=\bar{b} \cdot \bar{a}$.
(b) $\bar{a}+\bar{b}=\bar{b}+\bar{a}$.
(c) $\bar{a} \cdot(\bar{b}+\bar{c})=\bar{a} \cdot \bar{b}+\bar{a} \cdot \bar{c}$.
(d) $\bar{a} \cdot(\bar{b} \cdot \bar{c})=(\bar{a} \cdot \bar{b}) \cdot \bar{c}$.
(e) $\bar{a}+(\bar{b}+\bar{c})=(\bar{a}+\bar{b})+\bar{c}$.
12. Prove that 4 does not divide $n^{2}+2$ for any integer n.
13. Prove that $15 x^{2}-7 y^{2}=1$ has no integer solutions.
14. Prove that $x^{2}-5 y^{2}=2$ has no integer solutions.
15. Prove that the only integer solution to $x^{2}+y^{2}=6 z^{2}$ is $(x, y, z)=$ $(0,0,0)$.
16. Let $n, x, y \in \mathbb{Z}$ with $n \geq 2$. Consider the elements \bar{x} and \bar{y} in \mathbb{Z}_{n}. Prove:
(a) $\bar{x}=\bar{y}$ if and only if $x \equiv y(\bmod n)$.
(b) Either $\bar{x} \cap \bar{y}=\emptyset$ or $\bar{x}=\bar{y}$.
17. Prove that if a positive integer $x>1$ ends in a 7 then it is not a square. For example, $x=137$ is not a square.
