Math 446 - Homework # 4

- 1. Are the following statements true or false?
 - (a) $3 \equiv 5 \pmod{2}$
 - (b) $11 \equiv -5 \pmod{5}$
 - (c) $-31 \not\equiv 10 \pmod{3}$
 - (d) $100 \equiv 12 \pmod{4}$
- 2. Prove the following: If x, y, z, a, b, n are integers with $n \ge 2$ then the following are true:
 - (a) $x \equiv x \pmod{n}$
 - (b) If $x \equiv y \pmod{n}$, then and $y \equiv x \pmod{n}$.
 - (c) If $x \equiv y \pmod{n}$ and $y \equiv z \pmod{n}$, then $x \equiv z \pmod{n}$.
 - (d) If $a \equiv b \pmod{n}$ and $x \equiv y \pmod{n}$, then $a + x \equiv b + y \pmod{n}$.
 - (e) If $a \equiv b \pmod{n}$ and $x \equiv y \pmod{n}$, then $ax \equiv by \pmod{n}$.
 - (f) We have that $x \equiv y \pmod{n}$ if and only if x = y + kn for some integer k.
- 3. In \mathbb{Z}_4 , list ten elements from each of the following equivalence classes: $\overline{0}, \overline{-3}, \overline{2}, \overline{5}$.
- 4. Answer the following questions.
 - (a) Is $\overline{0} = \overline{8}$ in \mathbb{Z}_4 ?
 - (b) Is $\overline{-10} = \overline{-2}$ in \mathbb{Z}_5 ?
 - (c) Is $\overline{1} = \overline{13}$ in \mathbb{Z}_6 ?
 - (d) Is $\overline{2} = \overline{52}$ in \mathbb{Z}_4 ?
 - (e) Is $\overline{-5} = \overline{19}$ in \mathbb{Z}_4 ?
- 5. Answer the following questions where the elements are from \mathbb{Z}_8 .
 - (a) Is $\overline{0} = \overline{12}$?
 - (b) Is $\overline{-2} = \overline{14}$?
 - (c) Is $\overline{-51} = \overline{-109}$?

- (d) Is $\overline{3} = \overline{43}$?
- 6. Consider $\mathbb{Z}_7 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$. Calculate the following. For each answer \overline{x} that you calculate, reduce it so that $0 \le x \le 6$.
 - (a) $\overline{2} + \overline{6}$
 - (b) $\bar{3} + \bar{4}$
 - (c) $\overline{1473}$
 - (d) $\overline{3} \cdot \overline{5}$
 - (e) $\overline{2} \cdot \overline{3} + \overline{4} \cdot \overline{6}$
 - (f) $\overline{5} \cdot \overline{2} + \overline{1} + \overline{2} \cdot \overline{4} \cdot \overline{6}$
- 7. Consider $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$. Calculate the following. For each answer \overline{x} that you calculate, reduce it so that $0 \le x \le 3$.
 - (a) $\overline{2} + \overline{3}$
 - (b) $\overline{1} + \overline{3}$
 - (c) $\overline{4630}$
 - (d) $\overline{3} \cdot \overline{2}$
 - (e) $\overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3}$
 - (f) $\overline{3} \cdot \overline{2} + \overline{1} + \overline{2} + \overline{2} \cdot \overline{2} \cdot \overline{2}$
- 8. Suppose that x is an odd integer.
 - (a) Prove that $\overline{x} = \overline{1}$ or $\overline{x} = \overline{3}$ in \mathbb{Z}_4 .
 - (b) Prove that $\overline{x}^2 = \overline{1}$ in \mathbb{Z}_4 .
- 9. (a) Let p be a prime and x and y be integers. Suppose that $\overline{xy} = \overline{0}$ in \mathbb{Z}_p . Prove that either $\overline{x} = \overline{0}$ or $\overline{y} = \overline{0}$.
 - (b) Give an example where n is not prime with $\overline{xy} = \overline{0}$ but $\overline{x} \neq \overline{0}$ and $\overline{y} \neq \overline{0}$.
- 10. Let p be a prime. Suppose that $x^2 \equiv y^2 \pmod{p}$. Prove that either p|(x+y) or p|(x-y).
- 11. Let *n* be an integer with $n \ge 2$. Let $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_n$. Prove the following. (You will need to use the corresponding properties of the integers.)

- (a) $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$.
- (b) $\overline{a} + \overline{b} = \overline{b} + \overline{a}$.
- (c) $\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$.
- (d) $\overline{a} \cdot (\overline{b} \cdot \overline{c}) = (\overline{a} \cdot \overline{b}) \cdot \overline{c}.$
- (e) $\overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}.$
- 12. Prove that 4 does not divide $n^2 + 2$ for any integer n.
- 13. Prove that $15x^2 7y^2 = 1$ has no integer solutions.
- 14. Prove that $x^2 5y^2 = 2$ has no integer solutions.
- 15. Prove that the only integer solution to $x^2 + y^2 = 6z^2$ is (x, y, z) = (0, 0, 0).
- 16. Let $n, x, y \in \mathbb{Z}$ with $n \geq 2$. Consider the elements \overline{x} and \overline{y} in \mathbb{Z}_n . Prove:
 - (a) $\overline{x} = \overline{y}$ if and only if $x \equiv y \pmod{n}$.
 - (b) Either $\overline{x} \cap \overline{y} = \emptyset$ or $\overline{x} = \overline{y}$.
- 17. Prove that if a positive integer x > 1 ends in a 7 then it is not a square. For example, x = 137 is not a square.