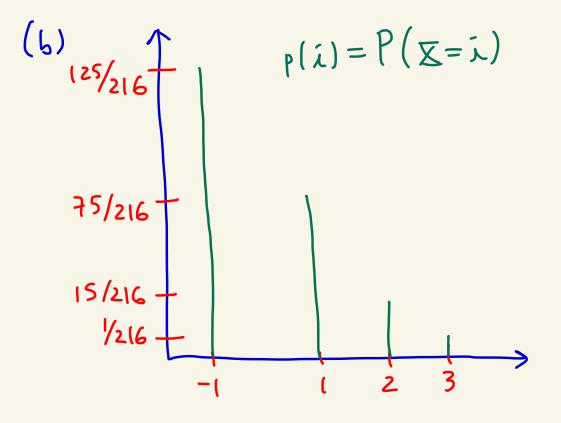
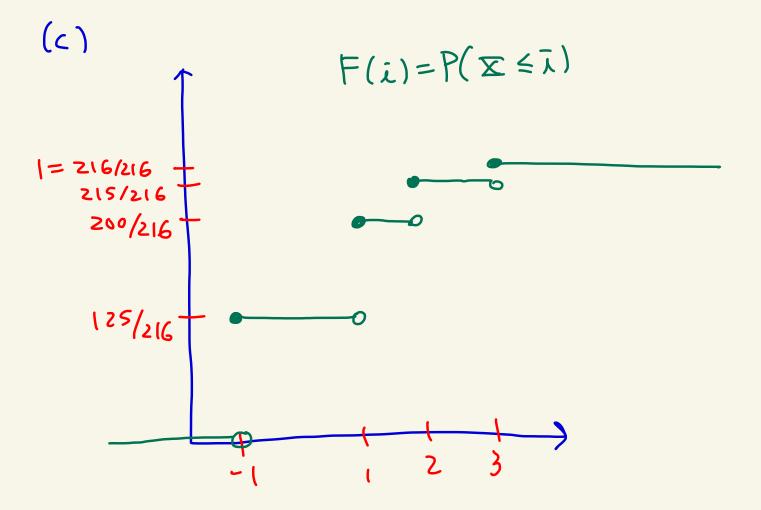
Math 4740 HW 4 Solutions

(1)
(a) Size of sample space
$$|S| = 6^{3}$$

You lose $-\$1$ if none of the dice match
Your number. Thus,
 $p(-1) = P(\$ = -1) = \frac{5 \cdot 5 \cdot 5}{6^{3}} = \frac{125}{216}$
You win $\$1$ if exactly one die matches
Your number. Thus,
 $p(1) = P(\$ = 1) = \frac{1 \cdot 5 \cdot 5 + 5 \cdot 1 \cdot 5 + 5 \cdot 5 \cdot 1}{6^{3}} = \frac{75}{216}$
You win $\$2$ if exactly two dice match
Your number. Thus,
 $p(2) = P(\$ = 2) = \frac{1 \cdot 1 \cdot 5 + 1 \cdot 5 \cdot 1 + 5 \cdot 1 \cdot 1}{6^{3}} = \frac{15}{216}$
You win $\$3$ if all the dice match your
number. Thus,
 $p(3) = P(\$ = 3) = \frac{1 \cdot 1 \cdot 1}{6^{3}} = \frac{1}{6^{3}} = \frac{1}{216}$





(ل)

 $E[X] = (-\#1)\left(\frac{125}{216}\right) + (\#1)\left(\frac{75}{216}\right) + (\#1)\left(\frac{75}{216}\right) + (\#3)\left(\frac{1}{216}\right)$

 $= - \pm \frac{17}{216} \approx - \pm 0.0787$

(a) $S = \{ (3), (1,3), (2,3), (4,3), (4,3) \}$ (1,1,3), (1,2,3), (1,4,3), (2,1,3),(2,2,31, (2,4,3), (4,1,3), (4,2,3), (4,4,3), ... 7 (1,1,3) (1,3) (3) -19 lhe probability 14 14 (1, 1)tree is (1)2 14 \|4 on the 14 14 14 (1,2) 17 left. 14 (1)The boxed 44 (),4, 1/4 (1, 4)44 elements 44 are S. (2,3) ****/ч Each 1/4 4 branch is (2) 14 (2,1) 14 1/4 probability 14 14 (2,2) Yy. You 44 44 (2,2,3) VIY multiply (2,41 44 2,4,3() the probabiliter (4.3) Yu (4,1,3) Yч sce (4,1)44 next VG (4,21 (4) 6 (4,2,3) lu page 44 (4,41 (4,4,3) 119 +

We have $P(\{(3)\}) = \frac{1}{4}$ $P(\{(1,3)\}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^2}$ $P(\{2,3\}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^2}$ $P(\{(4,3)\}) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^2}$ $P(\{(1,1,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$ $P(\{(1,2,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$ $P(\{(1,4,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$ $P(\{(z,1,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$ $P(\{(2,2,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$ $P(\{(2,4,3)\}) = \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{4^3}$

and so on ...

We check that P is a probability function
by showing that the sum of P over S
is 1. We have
$$\sum_{w \in S} P(\{w\}) = P(\{(1,1,3)\}) + P(\{(2,1,3)\}) + P(\{(2,1,3)\}) + P(\{(2,2,3)\}) + P(\{(2,2,3)\}) + P(\{(2,2,3)\}) + P(\{(2,2,3)\}) + P(\{(2,2,3)\}) + P(\{(2,2,3)\}) + P(\{(2,3,3)\}) + P(\{(3,3,3)\}) + P(\{(3,3,3)\})$$

$$= \frac{1}{4} \left[1 + \frac{3}{4} + \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{3} + \left(\frac{3}{4}\right)^{4} + \dots \right)$$

$$= \frac{1}{4} \cdot \left[\frac{1}{1 - \frac{3}{4}} \right] = \frac{1}{4} \cdot \left[\frac{1}{\frac{1}{4}} \right] = 1$$

$$\frac{1}{4} \cdot \frac{1}{4} + \frac{$$

(c)
$$B = \{(3), (1,3), (2,3), (4,3), (1,1,3), (1,2,3), (1,4,3), (1,4,3), (2,2,3), (2,4,3), (4,1,3), (4,2,3), (4,2,3), (4,4,3)\}$$

 $P(B) = \frac{1}{4} + 3 \cdot \frac{1}{4^2} + 9 \cdot \frac{1}{4^3} = \frac{16 + 12 + 9}{64}$
 $= \frac{37}{64} \approx 0.578125... \approx 57.8\%$
(d) $X = anount won or lost$
 $E[X] = (\#5)(\frac{37}{64}) + (-\#6)(\frac{27}{64})$
 $\xrightarrow{Probability}_{3 \text{ is rolled}}_{3 \text{ rolls}}$
 $= \frac{\#185 - \#162}{64} = \#\frac{23}{64} \approx \#0.359$
If you can play the game many times then you'd
expect to win on a userage $\#0.36$ per game.
So good to play if you can play many times.

(3)
$$S = \{1, 2, 3, 4\}$$

 $P(\{1\}) = \frac{2}{8}, P(\{2\}) = \frac{1}{8}$
 $P(\{3\}) = \frac{3}{8}, P(\{2\}) = \frac{2}{8}$
(a) Let X be the amount won or lost.
 $E[X] = (\{1\}) P(1) + (\{2\}) P(2) + (-\{1\}) P(3) + (-\{1\}) P(4)$
 $= (\{2\}) (\frac{2}{8}) + (\{2\}) (\frac{1}{8}) + (-\{1\}) (\frac{2}{8}) + (-\{1\}) (\frac{2}{8})$
 $= (\{\frac{1}{8}\}) = (\{2\}) P(1) + (\{2\}) P(2)$

Let a be the amount won or lost when 1 is rolled Let b be the amount won or lost when 2 is rolled c be the amount won or lost when 3 is rolled Let d be the amount won or lost when Y is rolled Let I be the amount won or lost. $E[Y] = \alpha(\vec{e}) + b(\vec{e}) + c(\vec{e}) + d(\vec{e})$ Then 29+6+34+20

For
$$E[T]=0$$
 we would need
 $2a+b+3c+2d=0$.
There are infinitely many solutions to
this equation. For example, You could
have $a=\#1$, $b=\#1$, $c=-\$1$, $d=\$0$.

(4)
There are
$$47 = 52-5$$
 cards left in
the deck.
(a) Out of the 47 remaining cards there
are $(3-3=10$ hearts left. The odds
of getting 2 more hearts is
 $\binom{10}{2} = \frac{(10\cdot9)}{(\frac{47}{2}\cdot46)} = \frac{45}{1081} \approx 0.0416 \approx 4.16\%$
 $\binom{1}{2} = \frac{n(n-1)}{2}$
(b) There are $13-3 = 10$ hearts left.
There are $47-10 = 37$ non-hearts left.
There are $47-10 = 37$ non-hearts left.
Choose choose
heart non-heart
 $\binom{10}{1}\binom{37}{1} = \frac{10\cdot37}{(\frac{47\cdot46}{2})} = \frac{370}{1081} \approx 0.34\% \approx 34\%$

(c) There are 3 queens left and 47-3=44 non-queens left.

$$\frac{ch_{a}ose}{queen} \xrightarrow{nn-queen} \frac{(3)(44)}{(1)} = \frac{3 \cdot 44}{1081} = \frac{(32)}{1081} \approx 0.122$$

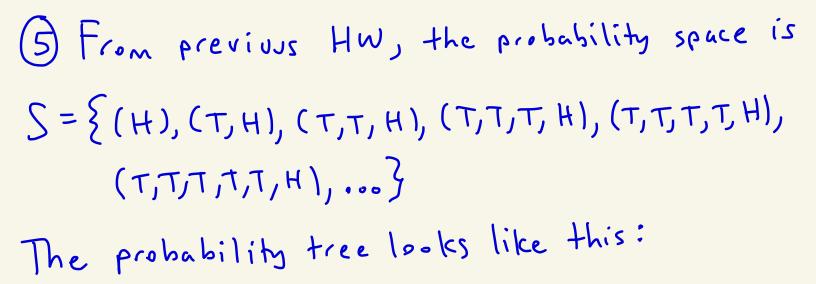
(d)

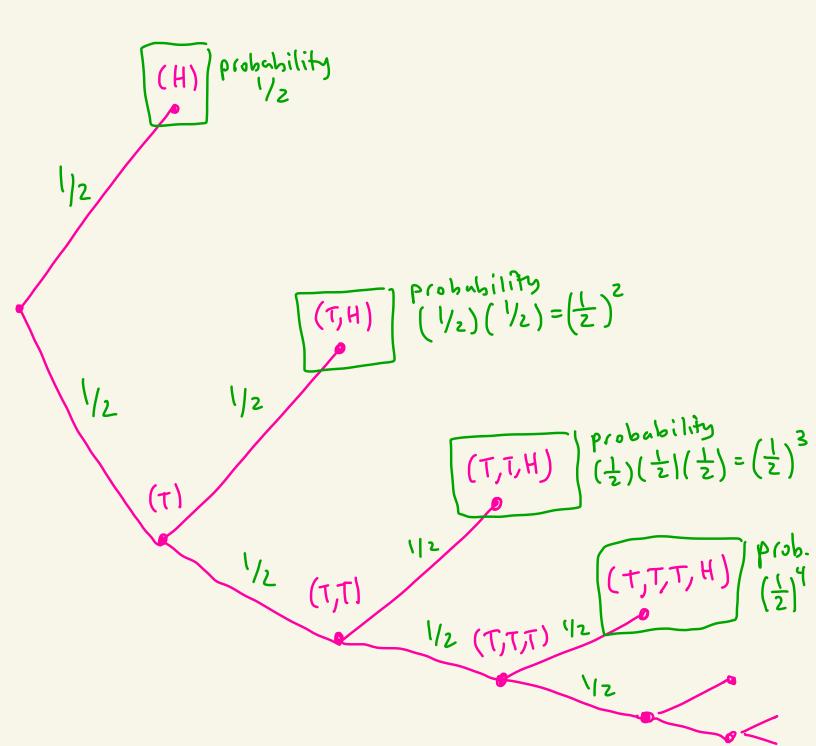
$$\begin{array}{c}
\text{Choose 2 queens out of 3 queens left} \\
\begin{array}{c}
(3) \\
(2) \\
(47) \\
(47) \\
2
\end{array} = \begin{array}{c}
3 \\
1081 \\
\approx 0.28 \ \%
\end{array}$$

(e) This happens if you get exactly one queen or exactly 2 queens. Add (c) and (d) to get $\frac{132}{1081} + \frac{3}{1081} = \frac{135}{1081} \approx 0.12488... \approx [2.49\%]$

(f) Let
$$X = amount$$
 won or lost
 $E[X] =$
 $= (\$500) \begin{bmatrix} probability \\ y_{0u} get \\ a flush \end{bmatrix} + (-\$20) \begin{bmatrix} probability y_{0n} \\ don't get a \\ flush \end{bmatrix}$
 $= (\$500) (\frac{45}{1081}) + (-\$20) [1 - \frac{45}{1081}]$
 $from part (a)$
 $= (\$500) (\frac{1780}{1081}) \approx (\$1.6466...) \approx (\$1.65)$
This is a good bet if you can play
the game many times since on average
over many plays you'd win \$1.65 per

game.





Let

$$E = \{(T_{1}T_{1}T_{1}H), (T_{1}T_{1}T_{1}T_{1}H), (T_{1}T_{1}T_{1}T_{1}H), ...\}$$
We want P(E).
You could calculate this in two ways.
Method 1
P(E) = P($\{(T_{1}T_{1}T_{1}T_{1}H)\}$ + P($\{(T_{1}T_{1}T_{1}T_{1}H)\}$ + ...
 $= (\frac{1}{2})^{4} + (\frac{1}{2})^{5} + (\frac{1}{2})^{6} + (\frac{1}{2})^{7} + ...$
 $= (\frac{1}{2})^{4} (1 + \frac{1}{2} + (\frac{1}{2})^{2} + (\frac{1}{2})^{3} + ...]$
 $= \frac{1}{16} [\frac{1}{1 - \frac{1}{2}}] = \frac{1}{16} [2] = \frac{1}{8}$
 $1 + x + x^{3} + x^{3} + ... = \frac{1}{1 - x}$
if $-1 < x < 1$
Method 2
 $P(E) = 1 - P(E) = |-P(\{(H), (T, H), (T, T, H)\})|$
 $= 1 - [\frac{1}{2} + (\frac{1}{2})^{2} + (\frac{1}{2})^{3}]$
 $= 1 - [\frac{1}{2} - \frac{1}{4} - \frac{1}{8}] = \frac{8 - 4 - 2 - 1}{8}$

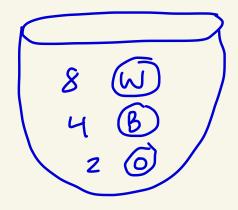
Thus, $P(E) = 1 - P(E) = 1 - \frac{1}{8} = \frac{1}{8}$ Let X be the amount won or lost. Then E[X] = (\$5) P(E) + (-\$1) P(E) $= (\$5) (\frac{1}{8}) + (-\$1) (\frac{2}{8})$ $= -\$\frac{2}{8} = -\0.25

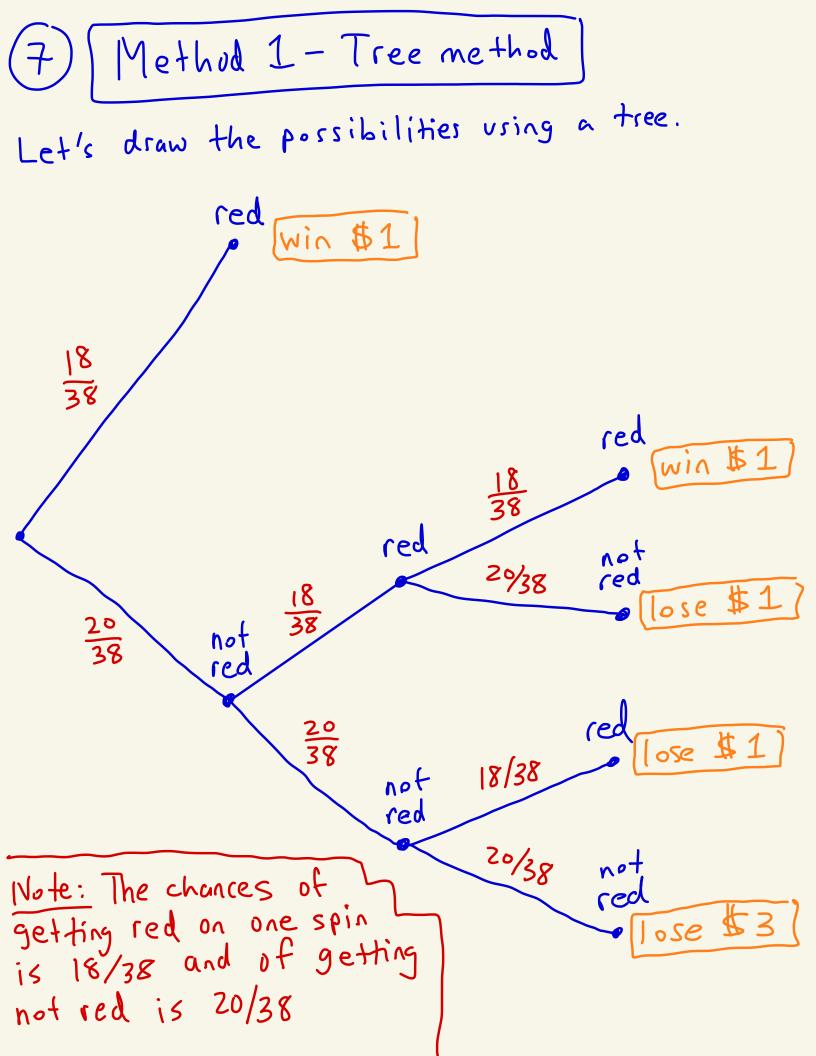
The expected value is negative so in the long run if you did this bet many times you would expect to lose \$0.25 per bet.

Event	amount won or lost (value k of X)	Probability of event P(X=k) where k=amount won ur lost
WW	-2	$\binom{\binom{8}{2}}{\binom{14}{2}} = \frac{\frac{28}{91}}{91}$
WO	- \	$\binom{\binom{8}{1}\binom{2}{1}}{\binom{14}{2}} = \frac{16}{91}$
00	0	$\binom{2}{2}/\binom{14}{2} = \frac{1}{91}$
WB		$\binom{\binom{8}{1}\binom{4}{1}}{\binom{14}{2}} = \frac{32}{91}$
BO	2	$\binom{4}{1}\binom{2}{1}/\binom{4}{2} = \frac{8}{91}$
BB	4	$\binom{4}{2}/\binom{14}{2} = \frac{6}{91}$

 $E[X] = (-2)(\frac{28}{91}) + (-1)(\frac{16}{91}) + (0)(\frac{1}{91}) + (1)(\frac{1}{91}) + (1)(\frac{32}{91}) + (2)(\frac{8}{91}) + (1)(\frac{6}{91})$

= 0





(a) Here
$$P(X > 0)$$
 is $P(X = 1)$
Since we can only win \$1. Thus,
 $P(X > 0) = \frac{18}{38} + \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{18}{38} = \frac{4059}{6859}$
to P of tree leading to
leading to win \$1.
(b) Do all the branches of the trees
 $E(X) = ($1) \cdot \left[\frac{18}{38} + \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{18}{38} \right]$
 $+ (-$$1) \cdot \left[\frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{18}{38} \right]$
 $+ (-$$3) \cdot \left[\frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \right]$
 $= -$$\frac{39}{36} \approx -$\frac{20}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{18}{38} \right]$
So even though the probability that we win is
about 59%, We lose on average about \$0.11
Desc. 9mme.

Since the spins are independent of
each other we get that
$$P(R) = \frac{18}{38}$$

$$P(R'RR) = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{18}{38} = \frac{6480}{54872}$$

$$P(R'RR) = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{18}{38} = \frac{7200}{54872}$$

$$P(R'R'R) = \frac{20}{38} \cdot \frac{20}{38} \cdot \frac{18}{38} = \frac{7200}{54872}$$

$$P(R'RR') = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} = \frac{7200}{54872}$$

$$P(R'RR') = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} = \frac{7200}{54872}$$

$$P(R'RR') = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} = \frac{7200}{54872}$$

$$P(R'RR') = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} = \frac{7200}{54872}$$

$$P(R'RR') = \frac{20}{38} \cdot \frac{18}{38} \cdot \frac{20}{38} = \frac{7200}{54872}$$

 $(a) = \frac{18}{38} + \frac{6480}{54872} = \frac{4059}{6859} \approx 0.59177$ (a) $+(-1)\left(\frac{7200}{54872}\right)+(-3)\left(\frac{8000}{54872}\right)=\frac{-39}{361}\approx-0.11$ So on average you lose \$0.11 per game even though yon win \$5990 of the time. Therefore this is not a winning strategy.