Math 3450 - Homework # 4 Functions

- 1. Let $A = \{1, 2, 3, 4\}$ and $B = \{7, 8, -1, \pi, 1/2\}$.
 - (a) Give an example of a function $f: A \to B$ that is one-to-one.
 - (b) Give an example of a function $f: A \to B$ that is not one-to-one.
 - (c) Give an example of a function $f: B \to A$ that is onto.
 - (d) Give an example of a function $f: B \to A$ that is not onto.
- 2. Consider the following functions. For each function f, (i) either prove that f is one-to-one or give an example to show otherwise, and (ii) either prove that f is onto, or give an example to show otherwise. (iii) If f is a bijection, find a formula for f^{-1} .

You will need the following definition. Let $M_2(\mathbb{R})$ be the set of all 2×2 matrices with entries from the real numbers. That is,

$$M_2(\mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$$

For example, $\begin{pmatrix} 1 & 0 \\ -10 & \pi \end{pmatrix}$ is an element of $M_2(\mathbb{R})$.

- (a) Let $f : \mathbb{Z} \to A$ given by f(k) = 2k where $A = \{2n \mid n \in \mathbb{Z}\}$. (For example, $f(7) = 2 \cdot 7 = 14$. Note: The set A is commonly referred to as $2\mathbb{Z}$.)
- (b) $f : \mathbb{Q} \to \mathbb{Q}$ where $f(x) = x^3$.
- (c) $f : \mathbb{R} \to \mathbb{R}$ where f(x) = 2x + 5.
- (d) $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^4 16$.
- (e) $f: \mathbb{Z}_4 \to \mathbb{Z}_4$ given by $f(\overline{x}) = \overline{2} \cdot \overline{x} + \overline{1}$.

(f)
$$f: M_2(\mathbb{R}) \to \mathbb{R}$$
 where $f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = a + d.$
(g) $f: M_2(\mathbb{R}) \to \mathbb{R}$ where $f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = ad - bc$

3. Let $A = \{1, 2, 3, 4\}$. Let $i_A : A \to A$ be the identity function on A. That is, $i_A(x) = x$ for all $x \in A$.

- (a) Let $f : A \to A$ where f(1) = 3, f(2) = 1, f(3) = 2, and f(4) = 4. Draw a picture of f. Draw a picture of f^{-1} . Show that $f \circ f^{-1} = i_A$ and $f^{-1} \circ f = i_A$.
- (b) Let $g: A \to A$ where g(1) = 1, g(2) = 3, g(3) = 4, and g(4) = 2. Draw a picture of g. Draw a picture of g^{-1} . Show that $g \circ g^{-1} = i_A$ and $g^{-1} \circ g = i_A$.
- 4. Let a and n be integers with $n \ge 2$. Define $f_a : \mathbb{Z}_n \to \mathbb{Z}_n$ by $f_a(\overline{x}) = \overline{a} \cdot \overline{x}$.
 - (a) Prove that f_a is a well-defined function.
 - (b) Draw a picture of f_4 when n = 6.
 - (c) Draw a picture of f_2 when n = 3.
 - (d) Prove that $f_c \circ f_d = f_{cd}$.
 - (e) Prove that $f_{cd} = f_{dc}$ for all integers c and d.
 - (f) Prove: If $y \equiv w \pmod{n}$, then $f_y = f_w$.
 - (g) Prove that if gcd(a, n) > 1, then f_a is not a bijection. [Hint: Note that $f_a(\overline{0}) = \overline{0}$. Find $\overline{k} \neq \overline{0}$ with $f_a(\overline{k}) = \overline{0}$.]
 - (h) Consider $f_3 : \mathbb{Z}_5 \to \mathbb{Z}_5$. Find f_3^{-1} and express it in the form f_b for some integer b.
- 5. Consider the function $f : \mathbb{Z}_n \to \mathbb{Z}_n$ given by $f(\overline{x}) = \overline{x}^2$.
 - (a) Prove that f a well-defined function.
 - (b) Draw a picture of f when n = 5.
 - (c) Draw a picture of f when n = 6.
 - (d) Prove that if n > 2 then f is not one-to-one.
- 6. Let $f : \mathbb{Q} \to \mathbb{Z}$ be defined by f(m/n) = m. For example, f(2/9) = 2 and f(5/10) = 5. Is f a well-defined function? If so prove it. If not explain why not.
- 7. Let *n* be an integer with $n \ge 2$. Let *a* be an integer. Define $g_a : \mathbb{Z}_n \to \mathbb{Z}_n$ by the formula $g_a(\overline{x}) = \overline{x} + \overline{a}$.
 - (a) Prove that g_a is well-defined.
 - (b) Draw a picture of g_3 and g_2 when n = 4.

- (c) Compute and draw a picture of $g_3 \circ g_2$ and $g_2 \circ g_3$ when n = 4.
- (d) Prove that g_a is a bijection for any n.
- (e) Find a formula for g_a^{-1} .
- 8. Give an example of $f: A \to B$ and $g: B \to C$ where the following are true:
 - (a) f is not onto, but $g \circ f$ is onto.
 - (b) g is not one-to-one, but $g \circ f$ is one-to-one.
- 9. Suppose that $f : A \to B$ and $g : B \to C$. Prove: If f is not one-to-one, then $g \circ f$ is not one-to-one.
- 10. Suppose that $f : A \to B$ and $g : B \to C$. Prove: If g is not onto, then $g \circ f$ is not onto.
- 11. Let $n \ge 2$ be an integer. Consider the reduction mod $n \mod n \mod \pi_n : \mathbb{Z} \to \mathbb{Z}_n$ given by the formula $\pi_n(x) = \overline{x}$. For example, $\pi_6(2) = \overline{2}$ and $\pi_6(18) = \overline{18} = \overline{0}$ since $18 \equiv 0 \pmod{6}$.
 - (a) Calculate $\pi_6(-1)$, $\pi_6(10)$, $\pi_6(7)$, and $\pi_6(-17)$. Draw a picture of the π_6 map. Is π_6 one-to-one? Is π_6 onto?
 - (b) Let $X = \{1, 17, -5, 102, -13\}$. Calculate $\pi_6(X)$.
 - (c) Let $Y = \{\overline{0}\}$. Prove that $\pi_6^{-1}(Y) = \{6k \mid k \in \mathbb{Z}\}.$
 - (d) Let $Y = \{\overline{1}\}$. Prove that $\pi_6^{-1}(Y) = \{6k + 1 \mid k \in \mathbb{Z}\}.$
 - (e) What is $\pi_6^{-1}(\{\overline{0},\overline{3}\})$ equal to? Prove your answer.
- 12. Let $A = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, 4, 5, 6, 7, \ldots\}$. Let $f : A \times A \to A$ where $f(m, n) = m^2 + n^2$.
 - (a) Calculate f(3,5), f(1,1), and f(2,1).
 - (b) Let $C = \{(0,0), (1,10), (2,5)\}$. Calculate f(C).
 - (c) Let $B = \{1, 2, 3, 4\}$. Find $f^{-1}(B)$.
 - (d) Show that f is not one-to-one.
 - (e) Show that f is not onto.
- 13. Let $f : \mathbb{R} \to \mathbb{R}$ where $f(x) = x^2 2$.

- (a) f([0,1])
- (b) $f^{-1}([0,1))$
- (c) $f^{-1}([-3, -1))$
- 14. Suppose that X, Y, W, Z, A, B are sets. Let $f : X \to Y, W \subseteq X$, $Z \subseteq X, A \subseteq Y$, and $B \subseteq Y$.
 - (a) Prove that $f(W \cup Z) = f(W) \cup f(Z)$.
 - (b) Prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
 - (c) Prove that $X f^{-1}(A) \subseteq f^{-1}(Y A)$.
- 15. Let A be a set. Define the function $f : \mathcal{P}(A) \to \mathcal{P}(A)$ where f(X) = A X for any $X \subseteq A$.
 - (a) Draw a picture of f when $A = \{1, 2, 3\}$.
 - (b) If $X \subseteq A$, then A (A X) = X.
 - (c) For general A prove that f is a bijection.
 - (d) For general A prove that $f = f^{-1}$.