Math 3450 - Homework \# 4 Functions

1. Let $A=\{1,2,3,4\}$ and $B=\{7,8,-1, \pi, 1 / 2\}$.
(a) Give an example of a function $f: A \rightarrow B$ that is one-to-one.
(b) Give an example of a function $f: A \rightarrow B$ that is not one-to-one.
(c) Give an example of a function $f: B \rightarrow A$ that is onto.
(d) Give an example of a function $f: B \rightarrow A$ that is not onto.
2. Consider the following functions. For each function f, (i) either prove that f is one-to-one or give an example to show otherwise, and (ii) either prove that f is onto, or give an example to show otherwise. (iii) If f is a bijection, find a formula for f^{-1}.
You will need the following definition. Let $M_{2}(\mathbb{R})$ be the set of all 2×2 matrices with entries from the real numbers. That is,

$$
M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}
$$

For example, $\left(\begin{array}{cc}1 & 0 \\ -10 & \pi\end{array}\right)$ is an element of $M_{2}(\mathbb{R})$.
(a) Let $f: \mathbb{Z} \rightarrow A$ given by $f(k)=2 k$ where $A=\{2 n \mid n \in \mathbb{Z}\}$.
(For example, $f(7)=2 \cdot 7=14$. Note: The set A is commonly referred to as $2 \mathbb{Z}$.)
(b) $f: \mathbb{Q} \rightarrow \mathbb{Q}$ where $f(x)=x^{3}$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=2 x+5$.
(d) $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^{4}-16$.
(e) $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{4}$ given by $f(\bar{x})=\overline{2} \cdot \bar{x}+\overline{1}$.
(f) $f: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ where $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a+d$.
(g) $f: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ where $f\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=a d-b c$.
3. Let $A=\{1,2,3,4\}$. Let $i_{A}: A \rightarrow A$ be the identity function on A. That is, $i_{A}(x)=x$ for all $x \in A$.
(a) Let $f: A \rightarrow A$ where $f(1)=3, f(2)=1, f(3)=2$, and $f(4)=4$. Draw a picture of f. Draw a picture of f^{-1}. Show that $f \circ f^{-1}=i_{A}$ and $f^{-1} \circ f=i_{A}$.
(b) Let $g: A \rightarrow A$ where $g(1)=1, g(2)=3, g(3)=4$, and $g(4)=2$. Draw a picture of g. Draw a picture of g^{-1}. Show that $g \circ g^{-1}=i_{A}$ and $g^{-1} \circ g=i_{A}$.
4. Let a and n be integers with $n \geq 2$. Define $f_{a}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by $f_{a}(\bar{x})=\bar{a} \cdot \bar{x}$.
(a) Prove that f_{a} is a well-defined function.
(b) Draw a picture of f_{4} when $n=6$.
(c) Draw a picture of f_{2} when $n=3$.
(d) Prove that $f_{c} \circ f_{d}=f_{c d}$.
(e) Prove that $f_{c d}=f_{d c}$ for all integers c and d.
(f) Prove: If $y \equiv w(\bmod n)$, then $f_{y}=f_{w}$.
(g) Prove that if $\operatorname{gcd}(a, n)>1$, then f_{a} is not a bijection. [Hint: Note that $f_{a}(\overline{0})=\overline{0}$. Find $\bar{k} \neq \overline{0}$ with $f_{a}(\bar{k})=\overline{0}$.]
(h) Consider $f_{3}: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$. Find f_{3}^{-1} and express it in the form f_{b} for some integer b.
5. Consider the function $f: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ given by $f(\bar{x})=\bar{x}^{2}$.
(a) Prove that f a well-defined function.
(b) Draw a picture of f when $n=5$.
(c) Draw a picture of f when $n=6$.
(d) Prove that if $n>2$ then f is not one-to-one.
6. Let $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be defined by $f(m / n)=m$. For example, $f(2 / 9)=2$ and $f(5 / 10)=5$. Is f a well-defined function? If so prove it. If not explain why not.
7. Let n be an integer with $n \geq 2$. Let a be an integer. Define $g_{a}: \mathbb{Z}_{n} \rightarrow$ \mathbb{Z}_{n} by the formula $g_{a}(\bar{x})=\bar{x}+\bar{a}$.
(a) Prove that g_{a} is well-defined.
(b) Draw a picture of g_{3} and g_{2} when $n=4$.
(c) Compute and draw a picture of $g_{3} \circ g_{2}$ and $g_{2} \circ g_{3}$ when $n=4$.
(d) Prove that g_{a} is a bijection for any n.
(e) Find a formula for g_{a}^{-1}.
8. Give an example of $f: A \rightarrow B$ and $g: B \rightarrow C$ where the following are true:
(a) f is not onto, but $g \circ f$ is onto.
(b) g is not one-to-one, but $g \circ f$ is one-to-one.
9. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove: If f is not one-to-one, then $g \circ f$ is not one-to-one.
10. Suppose that $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove: If g is not onto, then $g \circ f$ is not onto.
11. Let $n \geq 2$ be an integer. Consider the reduction $\bmod n \operatorname{map} \pi_{n}: \mathbb{Z} \rightarrow$ \mathbb{Z}_{n} given by the formula $\pi_{n}(x)=\bar{x}$.
For example, $\pi_{6}(2)=\overline{2}$ and $\pi_{6}(18)=\overline{18}=\overline{0}$ since $18 \equiv 0(\bmod 6)$.
(a) Calculate $\pi_{6}(-1), \pi_{6}(10), \pi_{6}(7)$, and $\pi_{6}(-17)$. Draw a picture of the π_{6} map. Is π_{6} one-to-one? Is π_{6} onto?
(b) Let $X=\{1,17,-5,102,-13\}$. Calculate $\pi_{6}(X)$.
(c) Let $Y=\{\overline{0}\}$. Prove that $\pi_{6}^{-1}(Y)=\{6 k \mid k \in \mathbb{Z}\}$.
(d) Let $Y=\{\overline{1}\}$. Prove that $\pi_{6}^{-1}(Y)=\{6 k+1 \mid k \in \mathbb{Z}\}$.
(e) What is $\pi_{6}^{-1}(\{\overline{0}, \overline{3}\})$ equal to? Prove your answer.
12. Let $A=\mathbb{N} \cup\{0\}=\{0,1,2,3,4,5,6,7, \ldots\}$. Let $f: A \times A \rightarrow A$ where $f(m, n)=m^{2}+n^{2}$.
(a) Calculate $f(3,5), f(1,1)$, and $f(2,1)$.
(b) Let $C=\{(0,0),(1,10),(2,5)\}$. Calculate $f(C)$.
(c) Let $B=\{1,2,3,4\}$. Find $f^{-1}(B)$.
(d) Show that f is not one-to-one.
(e) Show that f is not onto.
13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^{2}-2$.
(a) $f([0,1])$
(b) $f^{-1}([0,1))$
(c) $f^{-1}([-3,-1))$
14. Suppose that X, Y, W, Z, A, B are sets. Let $f: X \rightarrow Y, W \subseteq X$, $Z \subseteq X, A \subseteq Y$, and $B \subseteq Y$.
(a) Prove that $f(W \cup Z)=f(W) \cup f(Z)$.
(b) Prove that $f^{-1}(A \cap B)=f^{-1}(A) \cap f^{-1}(B)$.
(c) Prove that $X-f^{-1}(A) \subseteq f^{-1}(Y-A)$.
15. Let A be a set. Define the function $f: \mathcal{P}(A) \rightarrow \mathcal{P}(A)$ where $f(X)=$ $A-X$ for any $X \subseteq A$.
(a) Draw a picture of f when $A=\{1,2,3\}$.
(b) If $X \subseteq A$, then $A-(A-X)=X$.
(c) For general A prove that f is a bijection.
(d) For general A prove that $f=f^{-1}$.

