Math 446 - Homework \# 3

1. Prove the following:
(a) Given $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist $x, y \in \mathbb{Z}$ with $\operatorname{gcd}(x, y)=1$ and $\frac{a}{b}=\frac{x}{y}$.
Solution: Let $d=\operatorname{gcd}(a, b)$. Let $x=a / d$ and $y=b / d$. Then from class, we know that $\operatorname{gcd}(x, y)=1$. And we also have that $a / b=(a / d) /(b / d)=x / y$.
(b) If p is a prime and a is a positive integer and $p \mid a^{n}$, then $p^{n} \mid a^{n}$.

Solution: Suppose that p is a prime and p divides $a^{n}=a \cdot a \cdots a$. Recall that when a prime divides a product of integers then it must divide at least one of the integers contained in the product. Hence $p \mid a$. Therefore, $p k=a$ for some integer k. Hence, $a^{n}=$ $(p k)^{n}=p^{n} k^{n}$. Therefore $p^{n} \mid a^{n}$.
(c) $\sqrt[5]{5}$ is irrational.

Solution: Suppose that $\sqrt[5]{5}$ is rational. Then $\sqrt[5]{5}=a / b$ where $a, b \in \mathbb{Z}$. We may always cancel common divisors in a fraction, hence we may assume that $\operatorname{gcd}(a, b)=1$.
Taking the fifth power of both sides of $\sqrt[5]{5}=a / b$ gives $5=a^{5} / b^{5}$. Hence $a^{5}=5 b^{5}$. Therefore 5 divides the product $a^{5}=a \cdot a \cdot a \cdot a \cdot a$. Recall that when a prime divides a product of integers then it must divide at least one of the integers contained in the product. Since 5 is prime we must have that 5 divides a. Therefore $a=5 k$ where k is an integer. Substituting this expression into $a^{5}=5 b^{5}$ yields $5^{5} k^{5}=5 b^{5}$. Hence $5\left(5^{3} k^{5}\right)=b^{5}$. Therefore 5 divides b^{5}. Since 5 is prime we must have that $5 \mid b$. But then 5 would be a common divisor of a and b and hence $\operatorname{gcd}(a, b) \geq 5$. This contradicts our assumption that $\operatorname{gcd}(a, b)=1$.
Therefore $\sqrt[5]{5}$ is irrational.
(d) If p is a prime, then \sqrt{p} is irrational.

Solution: Suppose that \sqrt{p} is rational. Then $\sqrt{p}=a / b$ where $a, b \in \mathbb{Z}$. We may always cancel common divisors in a fraction, hence we may assume that $\operatorname{gcd}(a, b)=1$.
Squaring both sides of $\sqrt{p}=a / b$ and then multiplying through by b^{2} gives us that $p b^{2}=a^{2}$. Hence $p \mid a^{2}$. Recall that when a prime
divides a product of integers then it must divide at least one of the integers in the product. Since p is a prime, p must divide a. Therefore, $a=p k$ for some integer k. Substituting this back into $p b^{2}=a^{2}$ gives us that $p b^{2}=p^{2} k^{2}$. Dividing by p gives us $b^{2}=p k^{2}$. Thus $p \mid b^{2}$. Again, since p is a prime, we must have that $p \mid b$.
From the above arguments we see that $p \mid a$ and $p \mid b$. Hence $\operatorname{gcd}(a, b) \geq$ p. However, we also have that $\operatorname{gcd}(a, b)=1$. This gives us a contradiction.
2. (a) Suppose that a, b, c are integers with $a \neq 0$ and $b \neq 0$. If $a|c, b| c$, and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.
Solution 1: Since $a \mid c$ and $b \mid c$ we have that $c=a t$ and $c=b r$ where $r, t \in \mathbb{Z}$. Therefore $a t=b r$. Thus $a \mid b r$. Since $\operatorname{gcd}(a, b)=1$ and $a \mid b r$ we have that $a \mid r$. Thus $r=a k$ where $k \in \mathbb{Z}$. Thus, $c=b r=b a k=(a b) k$. Hence $a b \mid c$.
Solution 2: Since $a \mid c$ and $b \mid c$ we have that $c=a t$ and $c=b r$ where $r, t \in \mathbb{Z}$. Since $\operatorname{gcd}(a, b)=1$, there exist integers x and y with $a x+b y=1$. Multiplying this by c we get that $a c x+b c y=c$. Now substitute $c=b r$ into the first term and $c=a t$ into the second term to get that $c=a c x+b c y=a b r x+b a t y=(a b)(r x+t y)$. Therefore $a b \mid c$.
(b) Prove that $\sqrt{6}$ is irrational.

Solution: Suppose that $\sqrt{6}$ was rational. We show that this leads to a contradiction. We may write $\sqrt{6}=x / y$ where x and y are integers with $y \neq 0$ and $\operatorname{gcd}(x, y)=1$. Squaring this equation and cross-multiplying we get that $6 y^{2}=x^{2}$ or $2 \cdot 3 \cdot y^{2}=x^{2}$. Therefore, 2 divides $x^{2}=x \cdot x$. Since 2 is prime we must have that 2 divides x. Similarly, 3 divides $x^{2}=x \cdot x$. And since 3 is prime we must have that 3 divides x. Since $2 \mid x$ and $3 \mid x$ and $\operatorname{gcd}(2,3)=1$, by the first part of this problem, we have that $6=2 \cdot 3$ must divide x. So $x=6 u$ where u is a non-zero integer. Subbing this into $6 y^{2}=x^{2}$ gives us that $6 y^{2}=6^{2} u^{2}$. Thus $y^{2}=6 u^{2}$. Following the same reasoning as above, this forces that 6 must divide y. Therefore, 6 is a common divisor of x and y which contradicts the fact that $\operatorname{gcd}(x, y)=1$.
3. Prove that $\log _{10}(2)$ is an irrational number.

Solution: Suppose that $\log _{10}(2)$ was rational. Then $\log _{10}(2)=a / b$ where a and b are positive integers (we may assume they are positive since $\log _{10}(2)$ is positive). In particular, $b \neq 0$. We have that $10^{a / b}=2$ by the definition of the logarithm. Hence $10^{a}=2^{b}$. Therefore $2^{a} 5^{a}=2^{b}$. Since prime factorizations are unique (by the fundamental theorem of arithmetic) we must have that $a=0$ since there are no factors of 5 on the right-hand side of $2^{a} 5^{a}=2^{b}$. Hence $2^{0} 5^{0}=2^{b}$. This gives $2^{b}=1$. But this implies that $b=0$ which is not true. Hence $\log _{10}(2)$ is irrational.
4. We say that an integer $n \geq 2$ is a perfect square if $n=m^{2}$ for some integer $m \geq 2$. Prove that n is a perfect square if and only if the prime factorization of $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ has even exponents (that is, all the k_{i} are even).

Solution: Suppose that n is a perfect square. Therefore $n=m^{2}$ where m is a positive integer. By the fundamental theorem of arithmetic $m=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{r}^{e_{r}}$ where q_{i} are primes and e_{j} are positive integers. We see that

$$
n=m^{2}=\left(q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{r}^{e_{r}}\right)^{2}=q_{1}^{2 e_{1}} q_{2}^{2 e_{2}} \cdots q_{r}^{2 e_{r}} .
$$

Therefore every prime in the prime factorization of n is raised to an even exponent.

Conversely suppose that every prime in the prime factorization of n is raised to an even exponent. Then $n=p_{1}^{2 k_{1}} p_{2}^{2 k_{2}} \cdots p_{r}^{2 k_{r}}$ where p_{i} are primes and k_{j} are positive integers. Let $m=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$. Then m is an integer and $n=m^{2}$. Hence n is a perfect square.
5. (a) Let a and b be positive integers. Prove that $\operatorname{gcd}(a, b)>1$ if and only if there is a prime p satisfying $p \mid a$ and $p \mid b$.

Solution:

Suppose that $d=\operatorname{gcd}(a, b)>1$. Since d is positive integer with $d \geq 2$, by the fundamental theorem of arithmetic, there is at least one prime p with $p \mid d$. Since $p \mid d$ and $d \mid a$ we must have that $p \mid a$. Since $p \mid d$ and $d \mid b$ we must have that $p \mid b$. Hence $p \mid a$ and $p \mid b$.

Conversely suppose that there is a prime p with $p \mid a$ and $p \mid b$. Then $\operatorname{gcd}(a, b) \geq p>1$.
(b) Let a, b, and n be positive integers. Prove that if $\operatorname{gcd}(a, b)>1$ if and only if $\operatorname{gcd}\left(a^{n}, b^{n}\right)>1$.
Solution: Suppose that $d=\operatorname{gcd}(a, b)>1$. So $a=d k$ and $b=d m$ where k and m are integers. Thus $a^{n}=d^{n} k^{n}$ and $b^{n}=d^{n} m^{n}$. So $d \mid a^{n}$ and $d \mid b^{n}$. Hence $\operatorname{gcd}\left(a^{n}, b^{n}\right) \geq d>1$.

Conversely, suppose that $\operatorname{gcd}\left(a^{n}, b^{n}\right)>1$. Then by exercise (5a), there exists a prime q with $q \mid a^{n}$ and $q \mid b^{n}$. Since q divides the product $a^{n}=a \cdot a \cdots a$ and q is prime, we must have that $q \mid a$. Since q divides the product $b^{n}=b \cdot b \cdots b$ and q is prime, we must have that $q \mid b$. Hence $q \mid a$ and $q \mid b$. Thus $\operatorname{gcd}(a, b) \geq q>1$.
6. Suppose that x and y are positive integers where $4 \mid x y$ but $4 \nmid x$. Prove that $2 \mid y$.
Solution: Since $4 \mid x y$ we have that $4 s=x y$ for some integer s. Hence $2(2 s)=x y$. Thus $2 \mid x y$. Since 2 is prime we have that either $2 \mid x$ or $2 \mid y$. We break this into cases.
case 1: If $2 \mid y$ then we are done.
case 2: Suppose that $2 \mid x$. Then $x=2 k$ where k is some integer. Since $4 \nmid x$ we must have that k is odd. Hence $2 \nmid k$. Substituting $x=2 k$ into $4 s=x y$ gives $4 s=2 k y$. Hence $2 s=k y$. Therefore $2 \mid k y$. Since 2 is prime we must have either $2 \mid k$ or $2 \mid y$. But $2 \nmid k$. Therefore, $2 \mid y$.
7. Let a and b be positive integers. Suppose that 5 occurs in the prime factorization of a exactly four times and 5 occurs in the prime factorization of b exactly two times. How many times does 5 occur in the prime factorization of $a+b$?
Solution: By assumption $a=5^{4} s$ and $b=5^{2} t$ where s and t are positive integers and $5 \nmid s$ and $5 \nmid t$. Note that $a+b=5^{2}(25 s+t)$. We want to show that 5 does not divide $25 s+t$. If 5 did divide $25 s+t$ then $5 k=25 s+t$ for some integer k. This would imply that $5(k-5 s)=t$, which gives that 5 divides t. But we know that is not true.
Therefore $a+b=5^{2}(25 s+t)$ where 5 does not divide $25 s+t$. Hence 5 occurs twice in the prime factorization of $a+b$.
8. A positive integer $n \geq 2$ is called squarefree if it is not divisible by any perfect square. For example, 12 is not squarefree because $4=2^{2}$
is a perfect square and $4 \mid 12$. However, 10 is squarefree. (Recall the definition of perfect square from problem 4.
(a) Prove that a positive integer $n \geq 2$ is squarefree if and only if n can be written as the product of distinct primes.
Solution: Suppose that n is squarefree. Let $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}}$ be the prime factorization of n where the p_{i} are distinct. Here we have that the e_{i} are positive integers. Suppose that $e_{1} \geq 2$. Then $n=p_{1}^{2}\left(p_{1}^{e_{1}-2} p_{2}^{e_{2}} \cdots p_{s}^{e_{s}}\right)$. This would imply that n was divisible by the perfect square p_{1}^{2}. This can't happen since n is squarefree. Hence $e_{1}=1$. A similar argument shows that $e_{i}=1$ for all i. Thus $n=p_{1} p_{2} \cdots p_{s}$ is the product of distinct primes.
Conversely suppose that n is the product of distinct primes. By way of contradiction, suppose that n was divisible by a perfect square. Then $n=m^{2} k$ where $m \geq 2$ and $k \geq 1$ are integers. Let $m=q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{t}^{f_{t}}$ be the prime factorization of m where the q_{i} are primes and the f_{i} are positive integers. Then

$$
n=m^{2} k=q_{1}^{2 f_{1}} q_{2}^{2 f_{2}} \cdots q_{t}^{2 f_{t}} k
$$

This contradicts the fact that n is the product of distinct primes since, for example, q_{1} appears more than once in the factorization for n. Therefore n is not divisible by any perfect squares.
(b) Express the number $32,955,000=2^{3} \cdot 3 \cdot 5^{4} \cdot 13^{3}$ as the product of a squarefree number and a perfect square.

Solution:

$$
\begin{aligned}
32,955,000 & =2^{3} \cdot 3 \cdot 5^{4} \cdot 13^{3} \\
& =2^{2} \cdot 5^{4} \cdot 13^{2} \cdot 2 \cdot 3 \cdot 13 \\
& =\left(2 \cdot 5^{2} \cdot 13\right)^{2} \cdot(2 \cdot 3 \cdot 13) \\
& =650^{2} \cdot 78
\end{aligned}
$$

Hence $32,955,000$ is the product of the perfect square 650^{2} and the squarefree number $78=2 \cdot 3 \cdot 13$.
(c) Let $n \geq 2$ be a positive integer. Then either n is squarefree, or n is a perfect square, or n is the product of a squarefree number and a perfect square.

Solution: Let $n \geq 2$ be a positive integer. We factor n into primes using the fundamental theorem of arithmetic and break the proof into cases.
case 1: Suppose that n 's prime factorization contains primes to even powers and primes to odd powers. Then

$$
n=p_{1}^{2 e_{1}} \cdot p_{2}^{2 e_{2}} \cdots p_{a}^{2 e_{a}} q_{1}^{2 f_{1}+1} q_{2}^{2 f_{2}+1} \cdots q_{b}^{2 f_{b}+1}
$$

where the p_{i} are the primes in the factorization of n that are raised to an even power and the q_{i} are the primes in the factorization of n that are raised to an odd power. We then have that

$$
n=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{a}^{e_{a}} q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{b}^{f_{b}}\right)^{2} q_{1} \cdot q_{2} \cdots q_{b}
$$

If all the e_{i} and f_{i} are zero then n is a squarefree number. Otherwise, n is the product of a perfect square and a squarefree number. case 2 : Suppose that n 's prime factorization only contains primes to odd powers. Then

$$
n=q_{1}^{2 f_{1}+1} q_{2}^{2 f_{2}+1} \cdots q_{b}^{2 f_{b}+1}
$$

where the q_{i} are primes. We then have that

$$
n=\left(q_{1}^{f_{1}} q_{2}^{f_{2}} \cdots q_{b}^{f_{b}}\right)^{2} q_{1} \cdot q_{2} \cdots q_{b}
$$

If not all the f_{i} are zero then n is the product of the perfect square and the squarefree number. If all the f_{i} are zero then

$$
n=q_{1} \cdot q_{2} \cdots q_{b}
$$

and so n is a squarefree integer.
case 3: Suppose that n 's prime factorization only contains primes to even powers. Then there are primes p_{i} where

$$
n=p_{1}^{2 e_{1}} \cdot p_{2}^{2 e_{2}} \cdots p_{a}^{2 e_{a}}=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{a}^{e_{a}}\right)^{2}
$$

Here n is a perfect square.
9. Suppose that $x, y, z \in \mathbb{Z}$ such that $x>0, y>0, z>0, \operatorname{gcd}(x, y, z)=1$, and $x^{2}+y^{2}=z^{2}$. Prove that $\operatorname{gcd}(x, z)=1$.

Solution: Suppose that $x, y, z \in \mathbb{Z}$ such that $x>0, y>0, z>0$, $\operatorname{gcd}(x, y, z)=1$, and $x^{2}+y^{2}=z^{2}$. We now show that $\operatorname{gcd}(x, z)=1$. We do this by showing that the negation of this cannot happen.
Suppose that $\operatorname{gcd}(x, z)>1$. Then, by exercise 5 a, there exists a prime p such that $p \mid x$ and $p \mid z$. Then $x=p k$ and $z=p m$ for some integers k and m. Then $(p k)^{2}+y^{2}=(p m)^{2}$. Hence $p\left[p m^{2}-p k^{2}\right]=y^{2}$. Thus $p \mid y^{2}$. Recall that if a prime divides a product of two integers then the prime must divide one of the integers. Therefore $p \mid y$. But then $p|x, p| y$, and $p \mid z$, which implies that $\operatorname{gcd}(x, y, z) \geq p$. This contradicts the fact that $\operatorname{gcd}(x, y, z)=1$. Therefore, cannot have that $\operatorname{gcd}(x, z)>1$.

