Math 5680

Homework \# 3

Power series

1. Find the radius of convergence of the following power series.
(a) $\sum_{n=1}^{\infty} n^{2} z^{n}$
(b) $\sum_{n=1}^{\infty} n!\frac{z^{n}}{n^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{z^{2 n}}{4^{n}}$
(d) $\sum_{n=0}^{\infty} \frac{(z-1)^{n}}{1+2^{n}}$
2. Compute the Taylor series for $f(z)$ centered at z_{0}. Determine the set that it converges on.
(a) $f(z)=e^{z}$ centered at $z_{0}=1$.
(b) $f(z)=1 / z$ centered at $z_{0}=1$.
(c) $f(z)=e^{z^{2}}$ centered at $z_{0}=0$.
(d) $f(z)=\sin \left(z^{2}\right)$ centered at $z_{0}=0$.
(e) $f(z)=z^{2}+z$ centered at $z_{0}=1$.
3. Compute the Taylor series for $f(z)=\frac{1}{(z-1)(z-2)}$ centered at $z_{0}=0$. Show that this series converges when $|z|<1$.
4. Compute the first few terms of the Taylor series for $f(z)$ centered at the given point.
(a) $f(z)=\sin (z) / z$ centered at $z_{0}=1$.
(b) $f(z)=e^{z} \sin (z)$ centered at $z_{0}=0$.
5. Find power series for the following functions centered at $z_{0}=0$ and the radius of convergence of that series.
(a) $\frac{1}{(1-z)^{2}}$
(b) $\frac{1}{(1-z)^{3}}$
6. Let $f(z)=\sum a_{n} z^{n}$ have radius of convergence $R>0$. Let

$$
A=\{z| | z \mid<R\} .
$$

Let γ be a simple, piecewise smooth, closed curve lying inside of A.
Prove that $\int_{\gamma} f=0$.
7. (Isolation of zeroes of a non-constant analytic function) Suppose that f is analytic on an open set $A \subseteq \mathbb{C}$. Suppose that $z_{0} \in A$ with $f\left(z_{0}\right)=0$. Prove that either:
(i) there is an $r>0$ such that $D\left(z_{0} ; r\right) \subseteq A$ and $f(z)=0$ for all $z \in D\left(z_{0} ; r\right)$,
or
(ii) there is an $r>0$ such that $D\left(z_{0} ; r\right) \subseteq A$ and $f(z) \neq 0$ for all $z \in D\left(z_{0} ; r\right)-\left\{z_{0}\right\}$.
8. Let $f(z)=\sum a_{n} z^{n}$ have radius of convergence $R>0$. Let

$$
A=\{z| | z \mid<R\} .
$$

Let $z_{0} \in A$. Let \hat{R} be the radius of convergence for the Taylor series of f centered at z_{0}. Prove that

$$
R-\left|z_{0}\right| \leq \hat{R} \leq R+\left|z_{0}\right|
$$

