Math 5680 Homework # 3 Power series

1. Find the radius of convergence of the following power series.

(a)
$$\sum_{n=1}^{\infty} n^2 z^n$$

(b)
$$\sum_{n=1}^{\infty} n! \frac{z^n}{n^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{z^{2n}}{4^n}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(z-1)^n}{1+2^n}$$

- 2. Compute the Taylor series for f(z) centered at z_0 . Determine the set that it converges on.
 - (a) $f(z) = e^z$ centered at $z_0 = 1$.
 - (b) f(z) = 1/z centered at $z_0 = 1$.
 - (c) $f(z) = e^{z^2}$ centered at $z_0 = 0$.
 - (d) $f(z) = \sin(z^2)$ centered at $z_0 = 0$.
 - (e) $f(z) = z^2 + z$ centered at $z_0 = 1$.
- 3. Compute the Taylor series for $f(z) = \frac{1}{(z-1)(z-2)}$ centered at $z_0 = 0$. Show that this series converges when |z| < 1.
- 4. Compute the first few terms of the Taylor series for f(z) centered at the given point.
 - (a) $f(z) = \sin(z)/z$ centered at $z_0 = 1$.
 - (b) $f(z) = e^z \sin(z)$ centered at $z_0 = 0$.

5. Find power series for the following functions centered at $z_0 = 0$ and the radius of convergence of that series.

(a)
$$\frac{1}{(1-z)^2}$$

(b) $\frac{1}{(1-z)^3}$

6. Let $f(z) = \sum a_n z^n$ have radius of convergence R > 0. Let

$$A = \{ z \mid |z| < R \}.$$

Let γ be a simple, piecewise smooth, closed curve lying inside of A.

Prove that
$$\int_{\gamma} f = 0.$$

7. (Isolation of zeroes of a non-constant analytic function) Suppose that f is analytic on an open set $A \subseteq \mathbb{C}$. Suppose that $z_0 \in A$ with $f(z_0) = 0$. Prove that either:

(i) there is an r > 0 such that $D(z_0; r) \subseteq A$ and f(z) = 0 for all $z \in D(z_0; r)$,

or

(ii) there is an r > 0 such that $D(z_0; r) \subseteq A$ and $f(z) \neq 0$ for all $z \in D(z_0; r) - \{z_0\}$.

8. Let $f(z) = \sum a_n z^n$ have radius of convergence R > 0. Let

$$A = \{ z \mid |z| < R \}.$$

Let $z_0 \in A$. Let \hat{R} be the radius of convergence for the Taylor series of f centered at z_0 . Prove that

$$|R - |z_0| \le \hat{R} \le R + |z_0|$$