Math 446 - Homework # 3

- 1. Prove the following:
 - (a) Given $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist $x, y \in \mathbb{Z}$ with gcd(x, y) = 1and $\frac{a}{b} = \frac{x}{y}$.
 - (b) If p is a prime and a is a positive integer and $p|a^n$, then $p^n|a^n$.
 - (c) $\sqrt[5]{5}$ is irrational.
 - (d) If p is a prime, then \sqrt{p} is irrational.
- 2. (a) Suppose that a, b, c are integers with $a \neq 0$ and $b \neq 0$. If a|c, b|c, and gcd(a, b) = 1, then ab|c.
 - (b) Prove that $\sqrt{6}$ is irrational.
- 3. Prove that $\log_{10}(2)$ is an irrational number.
- 4. We say that an integer $n \ge 2$ is a **perfect square** if $n = m^2$ for some integer $m \ge 2$. Prove that n is a perfect square if and only if the prime factorization of $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ has even exponents (that is, all the k_i are even).
- 5. (a) Let a and b be positive integers. Prove that gcd(a, b) > 1 if and only if there is a prime p satisfying p|a and p|b.
 - (b) Let a, b, and n be positive integers. Prove that if gcd(a, b) > 1 if and only if $gcd(a^n, b^n) > 1$.
- 6. Suppose that x and y are positive integers where 4|xy| but $4 \nmid x$. Prove that 2|y.
- 7. Let a and b be positive integers. Suppose that 5 occurs in the prime factorization of a exactly four times and 5 occurs in the prime factorization of b exactly two times. How many times does 5 occur in the prime factorization of a + b?
- 8. A positive integer $n \ge 2$ is called **squarefree** if it is not divisible by any perfect square. For example, 12 is not squarefree because $4 = 2^2$ is a perfect square and 4|12. However, 10 is squarefree. (Recall the definition of perfect square from problem 4.)

- (a) Prove that a positive integer $n \ge 2$ is squarefree if and only if n can be written as the product of distinct primes.
- (b) Express the number $32,955,000 = 2^3 \cdot 3 \cdot 5^4 \cdot 13^3$ as the product of a squarefree number and a perfect square.
- (c) Let $n \ge 2$ be a positive integer. Then either n is squarefree, or n is a perfect square, or n is the product of a squarefree number and a perfect square.
- 9. Suppose that $x, y, z \in \mathbb{Z}$ such that x > 0, y > 0, z > 0, gcd(x, y, z) = 1, and $x^2 + y^2 = z^2$. Prove that gcd(x, z) = 1. [Hint: Use Exercise 5.]