Math 446 - Homework \# 3

1. Prove the following:
(a) Given $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist $x, y \in \mathbb{Z}$ with $\operatorname{gcd}(x, y)=1$ and $\frac{a}{b}=\frac{x}{y}$.
(b) If p is a prime and a is a positive integer and $p \mid a^{n}$, then $p^{n} \mid a^{n}$.
(c) $\sqrt[5]{5}$ is irrational.
(d) If p is a prime, then \sqrt{p} is irrational.
2. (a) Suppose that a, b, c are integers with $a \neq 0$ and $b \neq 0$. If $a|c, b| c$, and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.
(b) Prove that $\sqrt{6}$ is irrational.
3. Prove that $\log _{10}(2)$ is an irrational number.
4. We say that an integer $n \geq 2$ is a perfect square if $n=m^{2}$ for some integer $m \geq 2$. Prove that n is a perfect square if and only if the prime factorization of $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}$ has even exponents (that is, all the k_{i} are even).
5. (a) Let a and b be positive integers. Prove that $\operatorname{gcd}(a, b)>1$ if and only if there is a prime p satisfying $p \mid a$ and $p \mid b$.
(b) Let a, b, and n be positive integers. Prove that if $\operatorname{gcd}(a, b)>1$ if and only if $\operatorname{gcd}\left(a^{n}, b^{n}\right)>1$.
6. Suppose that x and y are positive integers where $4 \mid x y$ but $4 \nmid x$. Prove that $2 \mid y$.
7. Let a and b be positive integers. Suppose that 5 occurs in the prime factorization of a exactly four times and 5 occurs in the prime factorization of b exactly two times. How many times does 5 occur in the prime factorization of $a+b$?
8. A positive integer $n \geq 2$ is called squarefree if it is not divisible by any perfect square. For example, 12 is not squarefree because $4=2^{2}$ is a perfect square and $4 \mid 12$. However, 10 is squarefree. (Recall the definition of perfect square from problem 4.)
(a) Prove that a positive integer $n \geq 2$ is squarefree if and only if n can be written as the product of distinct primes.
(b) Express the number $32,955,000=2^{3} \cdot 3 \cdot 5^{4} \cdot 13^{3}$ as the product of a squarefree number and a perfect square.
(c) Let $n \geq 2$ be a positive integer. Then either n is squarefree, or n is a perfect square, or n is the product of a squarefree number and a perfect square.
9. Suppose that $x, y, z \in \mathbb{Z}$ such that $x>0, y>0, z>0, \operatorname{gcd}(x, y, z)=1$, and $x^{2}+y^{2}=z^{2}$. Prove that $\operatorname{gcd}(x, z)=1$. [Hint: Use Exercise 5.]
