Math 4570 - Homework \# 3
 Linear Transformations

1. Let V and W be vector spaces over a field F. Let $\mathbf{0}_{\mathbf{v}}$ and $\mathbf{0}_{\mathbf{w}}$ be the zero vectors of V and W respectively. Let $T: V \rightarrow W$ be a function. Prove the following.
(a) If T is a linear transformation, then $T\left(\mathbf{0}_{\mathbf{v}}\right)=\mathbf{0}_{\mathbf{w}}$.
(b) T is a linear transformation if and only if

$$
T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)
$$

for all $x, y \in V$ and $\alpha, \beta \in F$.
(c) T is a linear transformation if and only if

$$
T\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right)=\sum_{i=1}^{n} \alpha_{i} T\left(x_{i}\right)
$$

for all $x_{1}, \ldots, x_{n} \in V$ and $\alpha_{1}, \ldots, \alpha_{n} \in F$.
2. Verify whether or not $T: V \rightarrow W$ is a linear transformation. If T is a linear transformation then: (i) compute a basis for the nullspace of T, (ii) compute the nullity of T, (iii) determine if T one-to-one, (iv) compute the rank of T, (v) determine if T is onto, and (vi) compute the range of T.
(a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $T(a, b, c)=(a-b, 2 c)$
(b) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T(a, b)=\left(a-b, b^{2}\right)$
(c) $T: M_{2,3}(\mathbb{R}) \rightarrow M_{2,2}(\mathbb{R})$ given by

$$
T\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)=\left(\begin{array}{cc}
2 a-b & c+2 d \\
0 & 0
\end{array}\right)
$$

(d) $T: P_{2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ given by $T\left(a+b x+c x^{2}\right)=a+b x^{3}$
(e) $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ given by $T\left(a+b x+c x^{2}\right)=(1+a)+(1+b) x+$ $(1+c) x^{2}$
3. Let a and b be real numbers where $a<b$. Let $C(\mathbb{R})$ be the vector space of continuous functions on the real line as in HW \# 1. Let $T: C(\mathbb{R}) \rightarrow \mathbb{R}$ given by

$$
T(f)=\int_{a}^{b} f(t) d t
$$

Verify whether or not T is linear.
4. Let F be a field. Recall that if $A \in M_{m, n}(F)$ then we can make a linear transformation $L_{A}: F^{n} \rightarrow F^{m}$ where $L_{A}(x)=A x$ is left-sided matrix multiplication. In each problem, calculate $L_{A}(x)$ for the given A and x.
(a) $F=\mathbb{R}, L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, A=\left(\begin{array}{cc}1 & \pi \\ \frac{1}{2} & -10\end{array}\right), x=\binom{17}{-5}$
(b) $F=\mathbb{C}, L_{A}: \mathbb{C}^{3} \rightarrow \mathbb{C}^{2}, A=\left(\begin{array}{ccc}-i & 1 & 0 \\ 1+i & 0 & -1\end{array}\right), x=\left(\begin{array}{c}-2 i \\ 4 \\ 1.57\end{array}\right)$
5. Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Let $v_{1}, \ldots, v_{n} \in V$ such that $\operatorname{span}\left(\left\{v_{1}, \ldots, v_{n}\right\}\right)=V$, then $\operatorname{span}\left(\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}\right)=R(T)$.
6. Let V and W be vector spaces over a field F. Let $T: V \rightarrow W$ be a linear transformation. Let $\mathbf{0}_{\mathbf{v}}$ and $\mathbf{0}_{\mathbf{w}}$ be the zero vectors of V and W respectively.
(a) Prove that T is one-to-one if and only if $N(T)=\left\{\mathbf{0}_{\mathbf{v}}\right\}$.
(b) Suppose that V and W are both finite-dimensional and $\operatorname{dim}(V)=$ $\operatorname{dim}(W)$. Prove that T is one-to-one if and only if T is onto.
(c) Suppose that V and W are both finite-dimensional. Prove that if T is one-to-one and onto then $\operatorname{dim}(V)=\operatorname{dim}(W)$.
7. Let V and W be finite dimensional vector spaces and let $T: V \rightarrow W$ be a linear transformation.
(a) If $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T is not onto.
(b) If $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T is not one-to-one.

