Math 4300 - Homework # 3 More on the Euclidean plane

- 1. In this problem we are working in the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$. For the points A and B given, write down what L_{AB} is and draw a picture of L_{AB} . In your picture make sure to plot the values for $t = -2, -1, -\frac{1}{2}, 0, \frac{1}{2}, 1, 2$. You may plot more if you wish to.
 - (a) A = (0, 0) and B = (-1, -2)
 - (b) A = (-2, 3) and B = (1, 4)
- 2. Consider the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$. Let $A, B, C \in \mathbb{R}^2$ and let $r, s \in \mathbb{R}$. Prove the following.
 - (a) A + B = B + A
 - (b) (A+B) + C = A + (B+C)
 - (c) r(A+B) = rA + rB
 - (d) (r+s)A = rA + sA
 - (e) $\langle A, B \rangle = \langle B, A \rangle$
 - (f) $\langle rA, B \rangle = r \langle A, B \rangle$
 - (g) $\langle A + B, C \rangle = \langle A, C \rangle + \langle B, C \rangle$
 - (h) $||rA|| = |r| \cdot ||A||$
 - (i) ||A|| > 0 iff $A \neq (0, 0)$
- 3. Consider the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E, d_E)$. Let $A, B \in \mathbb{R}^2$. Prove that $d_E(A, B) = ||A B||$.