# Math 4300 - Homework \# 3 More on the Euclidean plane 

1. In this problem we are working in the Euclidean plane $\mathscr{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}\right)$. For the points $A$ and $B$ given, write down what $L_{A B}$ is and draw a picture of $L_{A B}$. In your picture make sure to plot the values for $t=-2,-1,-\frac{1}{2}, 0, \frac{1}{2}, 1,2$. You may plot more if you wish to.
(a) $A=(0,0)$ and $B=(-1,-2)$
(b) $A=(-2,3)$ and $B=(1,4)$
2. Consider the Euclidean plane $\mathscr{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}\right)$. Let $A, B, C \in \mathbb{R}^{2}$ and let $r, s \in \mathbb{R}$. Prove the following.
(a) $A+B=B+A$
(b) $(A+B)+C=A+(B+C)$
(c) $r(A+B)=r A+r B$
(d) $(r+s) A=r A+s A$
(e) $\langle A, B\rangle=\langle B, A\rangle$
(f) $\langle r A, B\rangle=r\langle A, B\rangle$
(g) $\langle A+B, C\rangle=\langle A, C\rangle+\langle B, C\rangle$
(h) $\|r A\|=|r| \cdot\|A\|$
(i) $\|A\|>0$ iff $A \neq(0,0)$
3. Consider the Euclidean plane $\mathscr{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}, d_{E}\right)$. Let $A, B \in \mathbb{R}^{2}$. Prove that $d_{E}(A, B)=\|A-B\|$.
