Math 465 - Homework \# 3 Limits of functions

1. Prove the following limit exists using the ϵ - definition of limit.
(a) $\lim _{x \rightarrow-1} 2 x+5$
(b) $\lim _{x \rightarrow 1} \frac{5 x}{x+3}$
(c) $\lim _{x \rightarrow 2} x^{4}$
(d) $\lim _{x \rightarrow \infty} \frac{2 x}{x^{2}+1}$
(e) $\lim _{x \rightarrow 1} \frac{1}{x^{2}}$
(f) $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}$
(g) $\lim _{x \rightarrow 2} x^{3}-1$
(h) $\lim _{x \rightarrow c} a x+b$ where $a, b, c \in \mathbb{R}$ and $a \neq 0$.
(i) $\lim _{x \rightarrow \infty} \frac{1}{x^{a}}$ where a is a fixed real number with $a>0$.
2. (a) Let $f: D \rightarrow \mathbb{R}$ be a function. Suppose that $\lim _{x \rightarrow a} f(x)$ exists for some $a \in \mathbb{R}$. Show that f is bounded near a (but not necessarily at $x=a$). That is, show that there exists $M>0$ and $\delta>0$ such that if $x \in D$ and $0<|x-a|<\delta$, then $|f(x)| \leq M$.
(b) Show that $\lim _{x \rightarrow 2} \frac{1}{(x-2)^{2}}$ does not exist.
3. (a) Let $f:[a, \infty) \rightarrow \mathbb{R}$ be a function for some $a \in \mathbb{R}$. Suppose that $\lim _{x \rightarrow \infty} f(x)$ exists. Prove: There exists an $C>0$ and an $N>0$ such that $|f(x)|<C$ for all $x \geq N$.
(b) Show that $\lim _{x \rightarrow \infty} x^{3}-1$ does not exist.
4. (a) Suppose that $\lim _{x \rightarrow \infty} f(x)$ exists and is equal to a real number L. Show that if $\left(a_{n}\right)$ is any unbounded increasing sequence of real numbers, then the sequence $\left(f\left(a_{n}\right)\right)$ converges to L.
(b) Show that $\lim _{x \rightarrow \infty} \sin (x)$ does not exist.
5. Suppose that $f: D \rightarrow \mathbb{R}$ and $g: D \rightarrow \mathbb{R}$. Let a a limit point of D. Suppose that $\lim _{x \rightarrow a} f(x)=A$ and $\lim _{x \rightarrow a} g(x)=B$. Prove that $\lim _{x \rightarrow a} f(x) g(x)=A B$.
