Math 465 - Homework # 3 Limits of functions

1. Prove the following limit exists using the ϵ - definition of limit.

(a)
$$\lim_{x \to -1} 2x + 5$$

(b)
$$\lim_{x \to 1} \frac{5x}{x+3}$$

(c)
$$\lim_{x \to 2} x^4$$

(d)
$$\lim_{x \to \infty} \frac{2x}{x^2+1}$$

(e)
$$\lim_{x \to 1} \frac{1}{x^2}$$

(f)
$$\lim_{x \to \infty} \frac{1}{x^2}$$

(g)
$$\lim_{x \to 2} x^3 - 1$$

(h)
$$\lim_{x \to c} ax + b \text{ where } a, b, c \in \mathbb{R} \text{ and } a \neq 0.$$

(i)
$$\lim_{x \to \infty} \frac{1}{x^a} \text{ where } a \text{ is a fixed real number with } a > 0.$$

- 2. (a) Let $f: D \to \mathbb{R}$ be a function. Suppose that $\lim_{x \to a} f(x)$ exists for some $a \in \mathbb{R}$. Show that f is bounded near a (but not necessarily at x = a). That is, show that there exists M > 0 and $\delta > 0$ such that if $x \in D$ and $0 < |x a| < \delta$, then $|f(x)| \le M$.
 - (b) Show that $\lim_{x \to 2} \frac{1}{(x-2)^2}$ does not exist.
- 3. (a) Let $f : [a, \infty) \to \mathbb{R}$ be a function for some $a \in \mathbb{R}$. Suppose that $\lim_{x \to \infty} f(x)$ exists. Prove: There exists an C > 0 and an N > 0 such that |f(x)| < C for all $x \ge N$.
 - (b) Show that $\lim_{x \to \infty} x^3 1$ does not exist.
- 4. (a) Suppose that $\lim_{x\to\infty} f(x)$ exists and is equal to a real number L. Show that if (a_n) is any unbounded increasing sequence of real numbers, then the sequence $(f(a_n))$ converges to L.

(b) Show that $\lim_{x\to\infty} \sin(x)$ does not exist.

5. Suppose that $f : D \to \mathbb{R}$ and $g : D \to \mathbb{R}$. Let *a* a limit point of *D*. Suppose that $\lim_{x \to a} f(x) = A$ and $\lim_{x \to a} g(x) = B$. Prove that $\lim_{x \to a} f(x)g(x) = AB$.