Math 3450 - Homework # 3

Equivalence Relations and Well-Defined Operations

1. A set S and a relation ~ on S is given. For each example, check if ~
is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If ~ satisfies the
property that you are checking, then prove it. If ~ does not satisfy the
property that you are checking, then give an example to show it.

(a)

S = R where a ~ b if and only if a < b.
Solution:
(i) Yes, ~ is reflexive. Proof: Let a € R. Then a < a. So a ~ a.

(ii) No, ~ is not symmetric. Counterexample: 3 < 4, but 4 £ 3.
That is, 3 ~ 4 but 4 % 3.

(iii) Yes, ~ is transitive. Proof: Let a,b,c € R and suppose that
a~bandb~c Thena<bandb<ec Soa<ec Thusa~c.

S = R where a ~ b if and only if |a| = [b].

Solution:

(i) Yes, ~ is reflexive. Proof: Let a € R. Then |a| = |a|. So a ~ a.
(ii) Yes, ~ is symmetric. Proof: Let a,b € R and suppose that
a ~b. Then |a| = |b|. So |b| = |a|. Thus b ~ a.

(iii) Yes, ~ is transitive. Proof: Let a,b,c € R and suppose that
a ~band b~ c. Then |a| = |b| and [b| = |¢|. So |a| = |¢|. Thus
an~c.

S = Z where a ~ b if and only if a|b.

Solution:

(i) Yes, ~ is reflexive. Proof: Let a € Z. Then a(1) = a. Hence
ala. So a ~ a.

(ii) No, ~ is not symmetric. Counterexample: 3|6, but 6 1 3.

(iii) Yes, ~ is transitive. Proof: Let a,b,c € Z. Suppose that
a ~ band b ~ ¢. Then alb and b|c. Thus there exists k,m € Z
such that ak = b and bm = ¢. Then ¢ = bm = (ak)m = a(km).
So ale. Thus a ~ c.

S is the set of subsets of N where A ~ B if and only if A C B.
Some examples of elements of S are {1,10,199}, {2,7,10}, and
{2,10,3,7}. Note that {2,7,10} ~ {2,10,3,7}



Solution:

(i) Yes, ~ is reflexive. Proof: A C A for all A€ S.

(ii) No, ~ is not symmetric. Counterexample: {3} C {3,42}, but
{3,42} € {3}.

(iii) Yes, ~ is transitive. Proof: Let A, B,C € S with A ~ B and
B~ (C. Then AC B and B C C. We want to show that A C C.
Let x € A. Since A C B, we have that z € B. Since B C C' we
have that z € C. So A C ' and thus A ~ C.

2. Consider the set S = R where x ~ y if and only if 22 = y°.

(a)

Find all the numbers that are related to x = 1. Repeat this
exercise for z = v/2 and z = 0.

Solution:

1 ~ 1 since 12 = 12. We also have 1 ~ (—1) since 12 = (—1)2.
There are no other elements related to 1.

V2 ~ /2 since (v/2)? = (v/2)?. We also have v/2 ~ (—+/2) since
(v/2)? = (—v/2)2. There are no other elements related to v/2.

0 ~ 0 since 02 = 02. There are no other elements related to 0.

Prove that ~ is an equivalence relation on S.
Solution:

Proof. Reflexive: We know that 2* = z? for all real numbers z.
Therefore x ~ x for all real numbers x. So ~ is reflexive.

Symmetric: Let z,y € R. Suppose that  ~ y.

Since x ~ y we have that 2% = y2.
So y? = .
Therefore y ~ x.

Transitive Let z,y, 2 € R. Suppose that z ~ y and y ~ z.

Since x ~ y we have that 2% = y2.
Since y ~ z we have that y? = 22
So 2% = 3? = 2%

Therefore z ~ 2. O

Draw a number line. Draw a picture of the equivalence class of 1.
Repeat this for z = 0, z = /6, © = —3.
Solution: Please draw a picture.



(d) Describe the elements of S/ ~.
Solution:

If x # 0, then the equivalence class of z is T = {—x,z}. The
equivalence class of 0 is 0 = {0}.

3. Consider the set S = Z where = ~ y if and only if 2|(z + y).

(a) List six numbers that are related to z = 2.

Solution:
2 ~ (—4) since 2[(2 + (—4)).
2) since 2|(2 + (—2)).

~ (=

~ (0) since 2[(2 + (0
~ (2) since 2[(2 + (2
~ (4) since 2|(2+ (4
~ (6) since 2|(2 + (6)).

(b) Prove that ~ is an equivalence relation on S.

(=
(=
))-
))-
))-

Proof. Reflexive: Let z € Z.

Since 2|2z we have that 2|(z + x).

So x ~ x.

Symmetric: Let z,y € Z and suppose that z ~ y.

Thus 2|(z + y).

So 2|(y + z).

So y ~ x.

Transitive: Let x,y, 2z € Z and suppose that z ~ y and y ~ z.
Therefore 2|(x + y) and 2|(y + 2).

So there exist k, ¢ € Z such that 2k =x +y and 20 =y + z.
Add these equations to get 2k + 20 = x + 2y + z.

Subtract 2y from both sides to get 2(k + ¢ —y) = = + z.

Note that k+ ¢ —y € Z, because k,{,y € Z and Z is closed under
addition and subtraction.

So 2|(z + 2).

Sox ~ 2.



(c) Draw a picture of the set of integers. Next, circle the numbers
that are in the equivalence class of —3.

Solution: Draw a picture and circle these numbers:
e, —7,—5,-3,-1,1,3,5,7,...
(d) Describe the elements of S/ ~. Draw a picture of several equiva-
lence classes.
Solution: Draw a picture of the following:

= Ol

— .., 6,-4,-2,0,2,46,. . )= 2=0=4="4=...
— {..,-7,-5-3,-1,1,3,5,7,...} = =3
So S/ ~ is equal to {0,1}. That is, one equivalence class is the

set of all odd numbers; the other equivalence class is the set of all
even numbers.

4. Show that the operation @ ® b =@ + b is a well-defined operation for
Z.,,. Here @*> means @ - @. For example, in Z, we have that

203=2-2+3-3=4+490=1.

Proof. 1) Let @,b € Z,, where a,b € Z.
Then
aeb=a+b =a+ 12 = a2+ 1.
Since a,b € Z we have that a® 4 b* € Z.
Therefore, a @ b= a2 + b2 € Z,.
So Z, is closed under the operation .

2) Suppose that aq, asg, b1,by € Z such that @y = @y and by = by. We
need to show that a; ®© b; = a3 @ b.

From class we had a theorem that says that if 7 =7 and w = Z, then
T+w=7+zandT-W=7-%.

Repeatedly using the above theorem we get the following.

We have that a7 - a7 = a3 - a; by multiplying the equations @3 = @3 and
ay = as.

Similarly, by - by = by - by by multiplying the equations b; = b, and
by = by.



Adding the two equations above we get that a1-a1+b1-by = Gz-a3+by-bs.
Therefore, a; @ by = a3 & bs.
Thus @ is a well-defined operation on Z,. O

. Given two integers a and b, let min(a, b) denote the minimum (smaller)
of a and b. Let n be an integer with n > 2. Is the operation a @® b =
min(a, b) a well-defined operation on Z,7

Solution: This operation is not well-defined. For example, consider
n = 4. In Z4 we have that 0 = 8 and 1 = 5. Thus, for the operation
to be well-defined we would need 0 ® 1 = 8 ® 5. However, 0 ® 1 =
min(0,1) = 0 and 8 ® 5 = min(8,5) = 5. But 0 # 5 in Z,.

d
. (a) Show that the operation %@5 = ch_ is not a well-defined operation
c

on Q. (b) Is the operation well-defined on Q — {0}?

d
(a) Show that the operation %@2 = Z— is not a well-defined operation
c
on Q.
Solution: We have that 3,2 € Q however 3@ % =21 =2 ¢ Q.

Hence Q is not closed under & and the operation is not well-

defined.

(b) Is the operation well-defined on Q \ {0}7
Solution: Yes! Here is a proof.

Proof. 1) Let a,b,c,d € Z with a # 0, b # 0,c # 0,d # 0 so that

%7§l€@_{0}

Since a # 0, b # 0,c # 0,d # 0 we have that ad # 0 and bc # 0.
a ¢ ad

ThuSE@E—QGQ—{O}

Therefore Q — {0} is closed under the operation @.

2) Suppose further that we have e, f,g,h € Z with e # 0, f #
0,9 # 0,h # 0 so that %, 7 € Q — {0}

Also assume that 7= % and <

=
We want to show that 7 @ 5 :%@ %.



<]

Since ¢ = < we have that af = be.

~

Since

Qulo o

= 7 we have that ch = dg.
Multiplying af = be by dg = ch we get afdg = bech.

Rearranging we get (ad)(fg) = (bc)(eh).
ad __ eh

) be gg'

So 3D = 7 D 5

Thus, the operation is well-defined.

Therefore

7. Is the operation @ & b = a® a well-defined operation on Z,?
Solution: There are two issues with this operation.

One issue is as follows. As an example, consider n = 4. In Z4 we have
that 1 = 5. Thus, for the operation to be well-defined we must have
that 2@ 1 = 2 ® 5. However, 20p1=21=2and2®5=2°=32=0.
And 2 # 0 in Z.

Another issue is when b is a negative integer. For example, in Z4
suppose we want to calculate 2 @ —1. What does this mean? The
formula says that it is 2=1. But what is that in Z,? In fact there is
no way to make sense of 1/2 in Z, because there is no multiplicative
inverse for 2 in Z,. (Why?) Because there is no T € Z, with 7 -2 = 1.
We can check:

Thus there is no way to define 2-1 in Z,.

8. (Constructing the integers from the natural numbers) Let S = N x N.
Define the relation ~ on S where (a,b) ~ (¢, d) if and only if a+d = b+-c.

(a) Is (3,6) ~ (7,10) 7

Solution: Yes, because 3+ 10 =6+ 7.
(b) Is (1,1) ~ (3,5) 7

Solution: No, because 1 +5 # 1+ 3.



()

Prove that ~ is an equivalence relation.

Proof. Reflexive: Let (a,b) € N x N.

Then a+b =10+ a.

So (a,b) ~ (a,b).

Symmetric: Let (a,b), (¢,d) € N x N.

Suppose (a,b) ~ (¢, d).

We know that a +d = b+ ¢, because (a,b) ~ (¢, d).
Soc+b=d+a.

So (¢,d) ~ (a,b).

Transitive: Let (a,b), (¢, d), (e, f) € N x N.

Suppose that (a,b) ~ (¢,d) and (¢, d) ~ (e, f).

We know that a+d = b+c and ¢+ f = d+e, because (a,b) ~ (c,d)
and (¢, d) ~ (e, f).

Add these two equations to get a+c+d+ f=b+c+d+e.
Subtract ¢ + d from both sides to get a + f = b+ e.

So (a,b) ~ (e, f).

Therefore, ~ is an equivalence relation, because it is reflexive,
symmetric, and transitive.

]

List five elements from each of the following equivalence classes:
(1,1), (1,2), (5,12).
Solution: Some possible answers:

(2,2),(3,3), (4,4), (5,5), (47,47) € (1, 1).

(2,3),(3,4), (4,5), (5,6), (47,48) € (1,2).

(2,9), (3,10), (4,11), (5,12), (47,56) € (5, 12).

Define the operation (a,b) & (¢,d) = (a + ¢,b+ d). Prove that &
is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a,b) and (¢, d) where
(a,b),(c,d) € Nx N.

Then a + ¢ and b + d are both in N because N is closed under
addition.



Thus, (a,b) ® (¢,d) = (a + ¢,b+ d) is a valid equivalence class in
N XN/ ~.

2) Now suppose that (a,b),(c, d),(e, f),and (g, h) are equivalence
classes of N x N/ ~.

Further suppose that (a,b) = (e, f) and (¢, d) = (g, h).

We need to show that (a,b) & (¢,d) = (e, f) & (g, h).

We have that a + f = b+ e since (a,b) = (e, f).

We also have that ¢ + h = d + g since (¢,d) = (g, h).

Adding these two equations gives a+ f+c+h=b+e+d+g.
Rearranging gives (a +c¢) + (f +h) = (b+d) + (e + g).
Therefore, (a +¢,b+d) = (e +g, f + h).

Hence (a,b) & (¢, d) = (e, ) & (g, h).

The above arguments show that @ is a well-defined operation on
the equivalence classes of N x N/ ~.

]

9. (Constructing the rational numbers from the integers) Let S = Z x
(Z — {0}). Define the relation ~ on S where (a,b) ~ (¢, d) if and only
if ad = be.

(a) Is (1,5) ~ (=3,—15) 7

Solution: Yes, because 1(—15) = 5(—3).
(b) Is (—1,1) ~ (2,3) ?

Solution: No, because (—1)(3) # 1(2).

(c) Prove that ~ is an equivalence relation.

Proof. Reflexive: Let (a,b) € Z x (Z — {0}).
Then ab = ba.

So (a,b) ~ (a,b).

Symmetric: Let (a,b), (¢,d) € Z x (Z — {0}).
Suppose (a,b) ~ (c,d).

We know that ad = be, because (a,b) ~ (¢, d).
So ¢b = da.



Hence (¢, d) ~ (a,b).

Transitive: Let (a,b), (¢, d), (e, f) € Z x (Z — {0}).

Suppose (a,b) ~ (¢,d) and (¢, d) ~ (e, f).

We know that ad = bc and cf = de, because (a,b) ~ (¢,d) and
(c,d) ~ (e, ).

Multiply these two equations to get adcf = bcde.

Divide both sides by ¢ and then by d to get af = be. (Note that
¢, d # 0 because ¢,d € Z — {0}, so it’s okay to divide by ¢ and by
d.)

So (a,b) ~ (e, f) since af = be.

Therefore, ~ is an equivalence relation, because it is reflexive,
symmetric, and transitive.

]

List five elements from each of the following equivalence classes:
(17 1)7 (07 2)7 (27 3)

Solution: Some possible answers:

(2,2),(3,3), (4,4),(5,5), (47,47) € (1,1).
(0,1),(0,2), (0, =1), (0, =2), (0, -47) € (0,2).

(2,3),(4,6),(6,9),(—2,—3),(—4,—6) € (2,3).

Define the operation (a,b) @ (c,d) = (ad + be, bd). Prove that &
is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a,b) and (c,d) where
(a,b),(c,d) € Z x (Z — {0}).

Then ad + bc € Z because a, b, ¢, d € Z and the integers are closed
under addition and multiplication.

Also, since b, d € Z—{0} we have that bd # 0 and so bd € Z—{0}.
Thus (ad+bc,bd) € Zx (Z—40}) and (a,b)® (¢, d) = (ad + be, bd)

is a valid equivalence class.

2) Now suppose that (a,b),(c,d),(z,y),and (w, z) are equivalence
classes in Z x (Z —{0})/ ~.

Further suppose that (a,b) = (x,y) and (¢, d) = (w, 2).




We need to show that (a,b) & (¢,d) = (z,y) & (w, 2).

That is, we need to show that [(ad + be, bd)] = [(zz + yw, yz)].
The above is equivalent to showing that (ad+bc)yz = bd(zz+yw).
Let’s do this.

Since (a,b) = (z,y) we have that ay = bz.

Since (c,d) = (w, z) we have that ¢z = dw.

Therefore, using the equations ay = bx and cz = dw we get that

(ad + bc)yz = adyz+ beyz
= (ay)(dz) + (cz)(by)
= (bx)(dz) + (dw)(by)
= bd(xz + yw).

Thus, [(ad + be, bd)] = [(zz + yw, yz)].
Thus, the operation @ is well-defined on the equivalence classes
of Z x (Z — {0})/ ~.

[

Define the operation (a,b) ® (¢,d) = (ac,bd). Prove that © is
well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a,b) and (¢, d) where
(a,b), (c,d) € Z x (Z — {0}).

Then ac € Z because a,c € Z and the integers are closed under
multiplication.

Also, since b, d € Z— {0} we have that bd # 0 and so bd € Z—{0}.
Thus (ac,bd) € Z x (Z — {0}) and (a,b) ® (¢,d) = (ac,bd) is a
valid equivalence class.

2) Now suppose that (a,b),(c, d),(z,y),and (w, z) are equivalence
classes in Z x (Z — {0})/ ~.

Further suppose that (a,b) = (z,y) and (¢,d) = (w, 2).

We need to show that (a,b) ® (¢,d) = (z,y) © (w, z).

That is, we need to show that [(ac, bd)] = [(zw, yz)].

The above is equivalent to showing that (ac) (yz) = (bd)(zw).




Let’s do this.

Since (a,b) = (x,y) we have that ay = bz.

Since (¢,d) = (w, z) we have that cz = dw.
Therefore, using the equations ay = bx and cz = dw we get that

(ac)(yz) = (ay)(cz) = (bx)(dw) = (bd)(zw).

Thus, [(ac,bd)] = [(zw, yz)].
Therefore, the operation © is well-defined on the equivalence classes
of Z x (Z —{0})/ ~.

m



