Math 456

Homework \# 3 - Polynomial Rings

1. Find the sum and product of the given polynomials in the given polynomial ring.
(a) $f(x)=\overline{2} x^{2}+x$ and $g(x)=x^{2}+\overline{2} x+\overline{1}$ in $\mathbb{Z}_{3}[x]$
(b) $f(x)=x^{3}+x^{2}+x+\overline{1}$ and $g(x)=x^{2}+\overline{1}$ in $\mathbb{Z}_{2}[x]$
2. List all of the polynomials in $\mathbb{Z}_{3}[x]$ of degree less than or equal to one.
3. List all of the polynomials in $\mathbb{Z}_{2}[x]$ of degree less than or equal to two.
4. Find all of the zeros of $f(x)=x^{2}+\overline{1}$ in $\mathbb{Z}_{2}[x]$.
5. Find all of the zeros of $f(x)=x^{2}+\overline{2}$ in $\mathbb{Z}_{3}[x]$.
6. Let R be an integral domain.
(a) If $p(x), q(x) \in R[x]$ are nonzero elements of $R[x]$, then $\operatorname{deg}(p(x) q(x))=$ $\operatorname{deg}(p(x))+\operatorname{deg}(q(x))$.
(b) Prove that $R[x]$ is an integral domain.
(c) The units of $R[x]$ are the units of R. That is, $(R[x])^{\times}=R^{\times}$.
