Math 456 Homework # 3 - Polynomial Rings

1. Find the sum and product of the given polynomials in the given polynomial ring.

- (a) $f(x) = \overline{2}x^2 + x$ and $g(x) = x^2 + \overline{2}x + \overline{1}$ in $\mathbb{Z}_3[x]$
- (b) $f(x) = x^3 + x^2 + x + \overline{1}$ and $g(x) = x^2 + \overline{1}$ in $\mathbb{Z}_2[x]$
- 2. List all of the polynomials in $\mathbb{Z}_3[x]$ of degree less than or equal to one.
- 3. List all of the polynomials in $\mathbb{Z}_2[x]$ of degree less than or equal to two.
- 4. Find all of the zeros of $f(x) = x^2 + \overline{1}$ in $\mathbb{Z}_2[x]$.
- 5. Find all of the zeros of $f(x) = x^2 + \overline{2}$ in $\mathbb{Z}_3[x]$.
- 6. Let R be an integral domain.
 - (a) If $p(x), q(x) \in R[x]$ are nonzero elements of R[x], then $\deg(p(x)q(x)) = \deg(p(x)) + \deg(q(x))$.
 - (b) Prove that R[x] is an integral domain.
 - (c) The units of R[x] are the units of R. That is, $(R[x])^{\times} = R^{\times}$.