Math 3450 - Homework # 3 Equivalence Relations and Well-Defined Operations

- 1. A set S and a relation \sim on S is given. For each example, check if \sim is (i) reflexive, (ii) symmetric, and/or (iii) transitive. If \sim satisfies the property that you are checking, then prove it. If \sim does not satisfy the property that you are checking, then give an example to show it.
 - (a) $S = \mathbb{R}$ where $a \sim b$ if and only if $a \leq b$.
 - (b) $S = \mathbb{R}$ where $a \sim b$ if and only if |a| = |b|.
 - (c) $S = \mathbb{Z}$ where $a \sim b$ if and only if a|b.
 - (d) S is the set of subsets of \mathbb{N} where $A \sim B$ if and only if $A \subseteq B$. Some examples of elements of S are $\{1, 10, 199\}$, $\{2, 7, 10\}$, and $\{2, 10, 3, 7\}$. Note that $\{2, 7, 10\} \sim \{2, 10, 3, 7\}$
- 2. Consider the set $S = \mathbb{R}$ where $x \sim y$ if and only if $x^2 = y^2$.
 - (a) Find all the numbers that are related to x = 1. Repeat this exercise for $x = \sqrt{2}$ and x = 0.
 - (b) Prove that \sim is an equivalence relation on S.
 - (c) Draw a number line. Draw a picture of the equivalence class of 1. Repeat this for x = 0, $x = \sqrt{6}$, x = -3.
 - (d) Describe the elements of S/\sim .
- 3. Consider the set $S = \mathbb{Z}$ where $x \sim y$ if and only if 2|(x+y).
 - (a) List six numbers that are related to x = 2.
 - (b) Prove that \sim is an equivalence relation on S.
 - (c) Draw a picture of the set of integers. Next, circle the numbers that are in the equivalence class of -3.
 - (d) Describe the elements of S/\sim . Draw a picture of several equivalence classes.
- 4. Show that the operation $\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2$ is a well-defined operation for \mathbb{Z}_n . Here \overline{a}^2 means $\overline{a} \cdot \overline{a}$. For example, in \mathbb{Z}_4 we have that

$$\overline{2} \oplus \overline{3} = \overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{1}.$$

- 5. Given two integers a and b, let $\min(a, b)$ denote the minimum (smaller) of a and b. Let n be an integer with $n \ge 2$. Is the operation $\overline{a} \oplus \overline{b} = \min(a, b)$ a well-defined operation on \mathbb{Z}_n ?
- 6. (a) Show that the operation $\frac{a}{b} \oplus \frac{c}{d} = \frac{ad}{bc}$ is not a well-defined operation on \mathbb{Q} . (b) Is the operation well-defined on $\mathbb{Q} \{0\}$?
- 7. Is the operation $\overline{a} \oplus \overline{b} = \overline{a^b}$ a well-defined operation on \mathbb{Z}_n ?
- 8. (Constructing the integers from the natural numbers) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a+d = b+c.
 - (a) Is $(3,6) \sim (7,10)$?
 - (b) Is $(1,1) \sim (3,5)$?
 - (c) Prove that \sim is an equivalence relation.
 - (d) List five elements from each of the following equivalence classes: $\overline{(1,1)}, \overline{(1,2)}, \overline{(5,12)}$.
 - (e) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.
- 9. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc.
 - (a) Is $(1,5) \sim (-3,-15)$?
 - (b) Is $(-1,1) \sim (2,3)$?
 - (c) Prove that \sim is an equivalence relation.
 - (d) <u>List five elements</u> from each of the following equivalence classes: (1, 1), (0, 2), (2, 3).
 - (e) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc,bd)}$. Prove that \oplus is well-defined on the set of equivalence classes.
 - (f) Define the operation $(a, b) \odot (c, d) = (ac, bd)$. Prove that \odot is well-defined on the set of equivalence classes.