## Math 446 - Homework \# 2

1. For the numbers $a$ and $b$ given below do the following: (i) list the positive divisors of a, (ii) list the positive divisors of b, (iii) list the positive common divisors of $a$ and $b$, (iv) calculate $\operatorname{gcd}(a, b)$.

## Solutions:

(a) $a=12$ and $b=24$.
(i) The divisors of $a=12$ are $1,2,3,4,6$, and 12 . (ii) The divisors of $b=24$ are $1,2,3,4,6,8,12$, and 24 . (iii) The common divisors of 12 and 24 are $1,2,3,4,6$ and 12 . (iv) Therefore $\operatorname{gcd}(12,24)=12$.
(b) $a=16$ and $b=36$
(i) The divisors of $a=16$ are $1,2,4,8$, and 16 . (ii) The divisors of $b=36$ are $1,2,3,4,6,9,12,18$, and 36. (iii) The common divisors of 16 and 36 are 1,2 , and 4 . (iv) Therefore $\operatorname{gcd}(12,24)=4$.
(c) $a=5$ and $b=18$
(i) The divisors of $a=5$ are 1, and 5. (ii) The divisors of $b=18$ are $1,2,3,6,9$, and 18. (iii) The common divisor of 5 and 18 are 1. (iv) Therefore $\operatorname{gcd}(5,18)=1$.
(d) $a=0$ and $b=3$
(i) Every non-zero integer $k$ divides $a=0$ since $k \cdot 0=0$. (ii) The divisors of $b=3$ are 1 , and 3. (iii) The common divisor of 0 and 3 are 1 and 3. (iv) Therefore $\operatorname{gcd}(0,3)=3$.
2. Calculate the following:

## Solutions:

(a) $\operatorname{gcd}(12,25,14)$

The positive divisors of 12 are $1,2,3,4,6$, and 12 . The positive divisors of 25 are 1,5 , and 25 . The positive divisors of 14 are 1 , 2,7 , and 14 . The only positive common divisor of 12,25 , and 14 is the integer 1 . Therefore, $\operatorname{gcd}(12,25,14)=1$.
(b) $\operatorname{gcd}(30,6,10)$

The positive divisors of 30 are $1,2,3,5,6,10,15$ and 30 . The positive divisors of 6 are $1,2,3$, and 6 . The positive divisors of

10 are $1,2,5$, and 10 . The positive common divisors of 30,6 , and 10 are 1 and 2 . Therefore, $\operatorname{gcd}(30,6,10)=2$.
(c) $\operatorname{gcd}(12,0,8)$

The positive divisors of 12 are $1,2,3,4,6$, and 12 . Every positive integer divides 0 . The positive divisors of 8 are $1,2,4$, and 8 . The positive common divisors of 12,0 , and 8 are 1,2 , and 4 . Therefore, $\operatorname{gcd}(12,0,8)=4$.
3. Using the Euclidean algorithm, calculate the greatest common divisor of the following numbers:

## Solutions:

(a) 39 and 17

$$
\begin{aligned}
39 & =2 \cdot 17+5 \\
17 & =3 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

The final non-zero remainder is 1 . Hence $\operatorname{gcd}(39,17)=1$.
(b) 2689 and 4001

$$
\begin{aligned}
4001 & =1 \cdot 2689+1312 \\
2689 & =2 \cdot 1312+65 \\
1312 & =20 \cdot 65+12 \\
65 & =5 \cdot 12+5 \\
12 & =2 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

The final non-zero remainder is 1 . Hence $\operatorname{gcd}(2689,4001)=1$.
(c) 1819 and 3587

$$
\begin{aligned}
3587 & =1 \cdot 1819+1768 \\
1819 & =1 \cdot 1768+51 \\
1768 & =34 \cdot 51+34 \\
51 & =1 \cdot 34+17 \\
34 & =2 \cdot 17
\end{aligned}
$$

The final non-zero remainder is 17 . Hence $\operatorname{gcd}(3587,1819)=17$.
(d) 864 and 468

$$
\begin{aligned}
864 & =1 \cdot 468+396 \\
468 & =1 \cdot 396+72 \\
396 & =5 \cdot 72+36 \\
72 & =2 \cdot 36
\end{aligned}
$$

The final non-zero remainder is 36 . Hence $\operatorname{gcd}(864,468)=36$.
4. For each problem: First determine if there are any integer solutions. If there are no solutions, explain why not. If there are solutions, then carry out these steps: (a) Use the Euclidean algorithm to find integers $x$ and $y$ that satisfy the equation, (b) give a formula for all the solutions to the equation, and (c) use your formula to find four more solutions to the equation.

## Solutions:

(a) $4001 x+2689 y=1$

We have that $\operatorname{gcd}(4001,2689)=1$. Since 1 divides 1 , we know that $4001 x+2689 y=1$ has integer solutions. Using the Euclidean algorithm we have that

$$
\begin{aligned}
4001 & =1 \cdot 2689+1312 \\
2689 & =2 \cdot 1312+65 \\
1312 & =20 \cdot 65+12 \\
65 & =5 \cdot 12+5 \\
12 & =2 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

Ignoring the last equation and rearranging the other equations so that the remainders are on the left side we get the following:

$$
\begin{aligned}
1312 & =4001-2689 \\
65 & =2689-2 \cdot 1312 \\
12 & =1312-20 \cdot 65 \\
5 & =65-5 \cdot 12 \\
2 & =12-2 \cdot 5 \\
1 & =5-2 \cdot 2
\end{aligned}
$$

Back substituting through the above equations we have the following:

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =5-2 \cdot(12-2 \cdot 5) \\
& =5 \cdot 5-2 \cdot 12 \\
& =5 \cdot(65-5 \cdot 12)-2 \cdot(1312-20 \cdot 65) \\
& =45 \cdot 65-25 \cdot 12-2 \cdot 1312 \\
& =45 \cdot(2689-2 \cdot 1312)-25 \cdot(1312-20 \cdot 65)-2 \cdot(4001-2689) \\
& =-2 \cdot 4001+47 \cdot 2689-115 \cdot 1312+500 \cdot 65 \\
& =-2 \cdot 4001+47 \cdot 2689-115 \cdot(4001-2689)+500 \cdot(2689-2 \cdot 1312) \\
& =-117 \cdot 4001+662 \cdot 2689-1000 \cdot 1312 \\
& =-117 \cdot 4001+662 \cdot 2689-1000 \cdot(4001-2689) \\
& =-1117 \cdot 4001+1662 \cdot 2689 .
\end{aligned}
$$

This gives us the solution $x=-1117$ and $y=1662$ to the equation $4001 x+2689 y=1$.
All the solutions are given by the formulas

$$
x=-1117-t(2689 / 1)=-1117-2689 t
$$

and

$$
y=1662+t(4001 / 1)=1662+4001 t
$$

where $t$ is any integer.
Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=1 & \text { gives } & x=-3806 \text { and } y=5663 \\
t=-1 & \text { gives } & x=1572 \text { and } y=-2339 \\
t=2 & \text { gives } & x=-6495 \text { and } y=9664 \\
t=-2 & \text { gives } & x=4261 \text { and } y=-6340
\end{array}
$$

(b) $864 x+468 y=36$

We have that $\operatorname{gcd}(864,468)=36$. Since 36 divides 36 , we know that $864 x+468 y=36$ has integer solutions. Using the Euclidean algorithm we have that

$$
\begin{aligned}
864 & =1 \cdot 468+396 \\
468 & =1 \cdot 396+72 \\
396 & =5 \cdot 72+36 \\
72 & =2 \cdot 36
\end{aligned}
$$

Ignoring the last equation and rearranging the other equations so that the remainders are on the left side we get the following:

$$
\begin{aligned}
396 & =864-468 \\
72 & =468-396 \\
36 & =396-5 \cdot 72
\end{aligned}
$$

Back substituting through the above equations we have the following:

$$
\begin{aligned}
36 & =396-5 \cdot 72 \\
& =(864-468)-5 \cdot(468-396) \\
& =864-6 \cdot 468+5 \cdot 396 \\
& =864-6 \cdot 468+5 \cdot(864-468) \\
& =6 \cdot 864-11 \cdot 468 .
\end{aligned}
$$

This gives us the solution $x=6$ and $y=-11$ to the equation $864 x+468 y=36$.
All the solutions are given by the formulas

$$
x=6-t(468 / 36)=6-13 t
$$

and

$$
y=-11+t(864 / 36)=-11+24 t
$$

where $t$ is any integer.
Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=1 & \text { gives } & x=-7 \text { and } y=13 \\
t=-1 & \text { gives } & x=19 \text { and } y=-35 \\
t=2 & \text { gives } & x=-20 \text { and } y=37 \\
t=-2 & \text { gives } & x=32 \text { and } y=-59
\end{array}
$$

(c) $5 x+3 y=7$

Note that $\operatorname{gcd}(5,3)=1$. Since 1 divides 7 there exist integer solutions to $5 x+3 y=7$. To find these solutions we first find a solution to $5 x+3 y=\operatorname{gcd}(5,3)=1$. One can use the Euclidean algorithm to do this. You should do this step if you need the practice. We have that $5 \cdot(-1)+3 \cdot(2)=1$. Now multiply the equation by 7 to get $5 \cdot(-7)+3 \cdot(14)=7$. Hence a solution to $5 x+3 y=7$ is given by $x=-7$ and $y=14$.

All the solutions are given by the formulas

$$
x=-7-t(3 / 1)=-7-3 t
$$

and

$$
y=14+t(5 / 1)=14+5 t
$$

where $t$ is any integer.
Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=1 & \text { gives } & x=-10 \text { and } y=19 \\
t=-1 & \text { gives } & x=-4 \text { and } y=9 \\
t=2 & \text { gives } & x=-13 \text { and } y=24 \\
t=-2 & \text { gives } & x=-1 \text { and } y=4
\end{array}
$$

(d) $1819 x+3587 y=17$

Note that $\operatorname{gcd}(1819,3587)=17$. Since 17 divides 17 , we know that $1819 x+3587 y=17$ has integer solutions. Using the Euclidean algorithm we have that

$$
\begin{aligned}
3587 & =1 \cdot 1819+1768 \\
1819 & =1 \cdot 1768+51 \\
1768 & =34 \cdot 51+34 \\
51 & =1 \cdot 34+17 \\
34 & =2 \cdot 17
\end{aligned}
$$

Ignoring the last equation and rearranging the other equations so that the remainders are on the left side we get the following:

$$
\begin{aligned}
1768 & =3587-1819 \\
51 & =1819-1 \cdot 1768 \\
34 & =1768-34 \cdot 51 \\
17 & =51-1 \cdot 34
\end{aligned}
$$

Back substituting through the above equations we have the following:

$$
\begin{aligned}
17 & =51-1 \cdot 34 \\
& =(1819-1768)-(1768-34 \cdot 51) \\
& =1819-2 \cdot 1768+34 \cdot 51 \\
& =1819-2 \cdot(3587-1819)+34 \cdot(1819-1768) \\
& =37 \cdot 1819-2 \cdot 3587-34 \cdot 1768 \\
& =37 \cdot 1819-2 \cdot 3587-34 \cdot(3587-1819) \\
& =71 \cdot 1819-36 \cdot 3587
\end{aligned}
$$

This gives us the solution $x=71$ and $y=-36$ to the equation $1819 x+3587 y=17$.
All the solutions are given by the formulas

$$
x=71-t(3587 / 17)=71-211 t
$$

and

$$
y=-36+t(1819 / 17)=-36+107 t
$$

where $t$ is any integer.
Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=1 & \text { gives } & x=-140 \text { and } y=71 \\
t=-1 & \text { gives } & x=282 \text { and } y=-143 \\
t=2 & \text { gives } & x=-351 \text { and } y=178 \\
t=-2 & \text { gives } & x=493 \text { and } y=-250
\end{array}
$$

(e) $10 x+105 y=101$

Note that $\operatorname{gcd}(10,105)=5$ and 5 does not divide 101. Hence $10 x+105 y=101$ does not have any integer solutions.
(f) $39 x+17 y=22$

Note that $\operatorname{gcd}(39,17)=1$ and 1 divides 22 . Hence $39 x+17 y=22$
has integer solutions. We first find a solution to $39 x+17 y=$
$\operatorname{gcd}(39,17)=1$ using the Euclidean algorithm. We then multiply that solution by 22 to get a solution to $39 x+17 y=22$.
We have that

$$
\begin{aligned}
39 & =2 \cdot 17+5 \\
17 & =3 \cdot 5+2 \\
5 & =2 \cdot 2+1 \\
2 & =2 \cdot 1+0
\end{aligned}
$$

Rearranging the equations as in the above problems, we have that

$$
\begin{aligned}
& 5=39-2 \cdot 17 \\
& 2=17-3 \cdot 5 \\
& 1=5-2 \cdot 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
1 & =5-2 \cdot 2 \\
& =(39-2 \cdot 17)-2 \cdot(17-3 \cdot 5) \\
& =39-4 \cdot 17+6 \cdot 5 \\
& =39-4 \cdot 17+6 \cdot(39-2 \cdot 17) \\
& =7 \cdot 39-16 \cdot 17
\end{aligned}
$$

Hence, a solution to $39 \cdot 7+17 \cdot(-16)=1$. Multiplying the equation by 22 we get that $39 \cdot 154+17 \cdot(-352)=22$. Hence $x=154$ and $y=-352$ is an integer solution to the equation $39 x+17 y=22$. All the solutions are given by the formulas

$$
x=154-t(17 / 1)=154-17 t
$$

and

$$
y=-352+t(39 / 1)=-352+39 t
$$

where $t$ is any integer.

Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=1 & \text { gives } & x=137 \text { and } y=-313 \\
t=-1 & \text { gives } & x=171 \text { and } y=-391 \\
t=2 & \text { gives } & x=120 \text { and } y=-274 \\
t=-2 & \text { gives } & x=188 \text { and } y=-430
\end{array}
$$

(g) $3 x+18 y=9$

Note that $\operatorname{gcd}(3,18)=3$ and 3 divides 9 . Hence $3 x+18 y=9$ has integer solutions. Note here that when one tries to do the Euclidean algorithm the process stops after one step:

$$
18=6 \cdot 3+0
$$

In this problem, 3 divides 18 , so we know right away that $\operatorname{gcd}(3,18)=$ 3 . How can we solve the linear equation though? Well, these kinds of problems are all of the same form. That is, the problem is of the form:

$$
a x+a q y=a k
$$

That is, the coefficient $a$ divides both the $b$ term and the $c$ term. In this case, one can just make $x=k$ and $y=0$. For our problem this is $x=3$ and $y=0$. That is, $3 \cdot 3+18 \cdot 0=9$.
Then the general solution to the equation is given by the formulas

$$
x=3-t(18 / 3)=3-6 t
$$

and

$$
y=0+t(3 / 3)=t
$$

where $t$ is any integer.
Plugging in different values for $t$ we get some more solutions:

$$
\begin{array}{rll}
t=0 & \text { gives } & x=3 \text { and } y=0 \\
t=1 & \text { gives } & x=-3 \text { and } y=1 \\
t=-1 & \text { gives } & x=9 \text { and } y=-1 \\
t=2 & \text { gives } & x=-9 \text { and } y=2 \\
t=-2 & \text { gives } & x=15 \text { and } y=-2
\end{array}
$$

5. Suppose that $a, b, x, y$ are integers with $a$ and $b$ not both zero. Prove that $\operatorname{gcd}(a, b)$ divides $a x+b y$.
Solution: Let $d=\operatorname{gcd}(a, b)$. Then $d \mid a$ and $d \mid b$. Hence $d s=a$ and $d t=b$ for some integers $s$ and $t$. Therefore, $a x+b y=d s x+d t y=$ $d(s x+t y)$. Hence $d \mid(a x+b y)$.
6. Prove that no integers $x$ and $y$ exist such that $x-y=200$ and $\operatorname{gcd}(x, y)=$ 3.

Solution: Suppose that there exist integers $x$ and $y$ with $x-y=200$ and $\operatorname{gcd}(x, y)=3$. Then $3 s=x$ and $3 t=y$ for some integers $s$ and $t$ because $3 \mid x$ and $3 \mid y$. So

$$
200=x-y=3 s-3 t=3(s-t)
$$

Hence 3 would divide 200. But 3 does not divide 200. This is a contradiction. Hence no such integers exist.
7. Let $a$ and $b$ be integers, $a>0, b>0$, and $d=\operatorname{gcd}(a, b)$. Prove that $a \mid b$ if and only if $d=a$.

Solution: Suppose that $a \mid b$. Since $a>0$ and $a \mid a$ and $a \mid b$, we have that $a$ is a positive common divisor of $a$ and $b$. Since $d$ is the largest common divisor of $a$ and $b$ we know that $a \leq d$. Furthermore, since $d$ is a divisor of $a$ and both $a$ and $d$ are positive, we have that $d \leq a$. Combining $a \leq d$ and $d \leq a$ we get that $d=a$.

Conversely suppose that $d=a$. Note $d \mid b$ since $d$ is the greatest common divisor of $a$ and $b$. So $a \mid b$ since $a=d$.
8. Let $a$ and $b$ be integers such that $\operatorname{gcd}(a, 4)=2$ and $\operatorname{gcd}(b, 4)=2$. Prove that $\operatorname{gcd}(a+b, 4)=4$.
Solution: Note that 2 divides $a$ since $\operatorname{gcd}(a, 4)=2$. Thus $a=2 s$ for some integer $s$. Also, 2 divides $b$ since $\operatorname{gcd}(b, 4)=2$. Thus $b=2 t$ for some integer $t$.
Note that 4 does not divide $a$ since if it did then $\operatorname{gcd}(a, 4)=4$ (since 4 would then be a common divisor of both $a$ and 4). This isn't true because we assumed that $\operatorname{gcd}(a, 4)=2$. Therefore, $s$ must be odd. Thus $s=2 x+1$ for some integer $x$.

Note that 4 does not divide $b$ since if it did then $\operatorname{gcd}(b, 4)=4$ (since 4 would then be a common divisor of both $b$ and 4 ). This isn't true because we assumed that $\operatorname{gcd}(b, 4)=2$. Therefore, $t$ must be odd. Thus $t=2 y+1$ for some integer $y$.
Therefore, $a+b=2 s+2 t=2(2 x+1)+2(2 y+1)=4(x+y+1)$. So 4 divides $a+b$. Therefore, $\operatorname{gcd}(a+b, 4)=4$.
9. Suppose that $x, y, z$ are integers with $x \neq 0$. Prove that $x \mid y z$ if and only if $\left.\frac{x}{\operatorname{gcd}(x, y)} \right\rvert\, z$.
Solution: Suppose that $x \mid y z$. Then $x k=y z$ for some integer $k$. Let $d=\operatorname{gcd}(x, y)$.

Note that $d \mid x$ and $d \mid y$. Therefore, $x / d$ and $y / d$ are both integers. Dividing the equation $x k=y z$ by $d$ gives that $(x / d) k=(y / d) \cdot z$. In class we showed that $\operatorname{gcd}(x / d, y / d)=1$. Hence since $x / d$ divides the product $(y / d) \cdot z$ and $\operatorname{gcd}(x / d, y / d)=1$ we must have that $(x / d) \mid z$. This is what we wanted to prove.

Conversely, suppose that $(x / d) \mid z$. Then $(x / d) k=z$ for some integer $k$. Since $d \mid y$ we must have that $d s=y$ for some integer $s$. Multiplying the equation $(x / d) \cdot k=z$ by $y$ gives $(x / d) \cdot k \cdot y=y z$. Since $y / d=s$ we have that $x \cdot k \cdot s=y z$. Hence $x \mid y z$.
10. Let $a, b, c$ be integers with $a \neq 0$ and $b \neq 0$. Prove that if $a|c, b| c$, and $\operatorname{gcd}(a, b)=1$, then $a b \mid c$.
Solution: Since $a \mid c$ we have that $a x=c$ for some integer $x$. Since $b \mid c$ we have that $b y=c$ for some integer $y$. Therefore

$$
a x=c=b y .
$$

Therefore, $b \mid a x$. Since $\operatorname{gcd}(b, a)=1$ we must have that $b \mid x$. Therefore, $b k=x$ for some integer $k$. Hence

$$
c=a x=a(b k)=(a b) k .
$$

Therefore, $a b \mid c$.
11. Let $a, b, c, x$ be integers with $a$ and $b$ not both zero and $x \neq 0$. Prove that if $\operatorname{gcd}(a, b)=1, x \mid a$, and $x \mid b c$, then $x \mid c$.

Solution \# 1: Since $x \mid a$ and $x \mid b c$ we have that $a=x k$ and $b c=x g$ where $k$ and $g$ are integers. Since $\operatorname{gcd}(a, b)=1$, there exist integers $x_{0}$ and $y_{0}$ such that $a x_{0}+b y_{0}=1$. Multiplying by $c$ gives us $a c x_{0}+b c y_{0}=c$. Substituting the equations from the first sentence of this proof we have that $x k c x_{0}+x g y_{0}=c$. Thus, $x\left(k c x_{0}+g y_{0}\right)=c$. This shows that $x \mid c$.

Solution \# 2: Suppose that $d$ is a positive common divisor of $x$ and $b$. [We will show that $d=1$. This will imply that $\operatorname{gcd}(x, b)=1$.] By definition $d \mid x$ and $d \mid b$. Since $d \mid x$ and $x \mid a$ we have that $d \mid a$. Hence $d$ is a positive common divisor of $a$ and $b$. Therefore $d=1$ because $\operatorname{gcd}(a, b)=1$ by assumption. Thus, the only positive divisor of $x$ and $b$ is the integer 1 . Hence $\operatorname{gcd}(x, b)=1$.
Since $x \mid b c$ and $\operatorname{gcd}(x, b)=1$ we have that $x \mid c$.
12. Suppose that $a$ and $b$ are integers, not both zero. Suppose that there exist integers $x$ and $y$ with $a x+b y=1$. Prove that $\operatorname{gcd}(a, b)=1$.
Solution: Let $d=\operatorname{gcd}(a, b)$. Thus $d$ is a positive common divisor of $a$ and $b$. Since $d \mid a$ and $d \mid b$ we have that $d \mid(a x+b y)$. Hence $d \mid 1$. Thus $d=1$ because $d$ is positive.
13. Show that the following is not necessarily true: If $a, b, c, x, y$ are integers and $a x+b y=c$ then $\operatorname{gcd}(a, b)=c$.
Solution: Try $a=1, b=2, c=2, x=4$, and $y=-1$. Note that $\operatorname{gcd}(a, b)=1$.

