Math 4570 - Homework \# 2

Spanning sets, Linear Independence, Bases, Dimension

Recall from HW 1: Let V be a vector space over a field F. Let W_{1} and W_{2} be subspaces of V. Define the sum of W_{1} and W_{2} to be the set

$$
W_{1}+W_{2}=\left\{x+y \mid x \in W_{1} \text { and } y \in W_{2}\right\}
$$

1. Let $V=M_{2,2}(\mathbb{R})$ and

$$
W_{1}=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

and

$$
W_{2}=\left\{\left.\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}
$$

(a) Prove that W_{1} and W_{2} are subspaces of $M_{2,2}(\mathbb{R})$.
(b) Find the dimensions of $W_{1}, W_{2}, W_{1} \cap W_{2}$ and $W_{1}+W_{2}$.
2. Let V be a vector space over a field F. Let $v_{1}, v_{2}, \cdots, v_{n}$ be vectors in V. Prove that if one of the v_{i} is the zero vector, then the vectors $v_{1}, v_{2}, \ldots, v_{n}$ are linearly dependent.
3. Let F be either \mathbb{R} or \mathbb{C}. Prove that $P_{n}(F)$ has dimension $n+1$.
4. Let $P(\mathbb{R})$ denote the set of all polynomials with coefficients from \mathbb{R}. You may assume that $P(\mathbb{R})$ is a vector space over \mathbb{R}. Show that $P(\mathbb{R})$ is not finite dimensional.
5. Let V be a vector space over a field F. Let $x, y \in V$. Then $\{x, y\}$ is a linearly dependent set if and only if x or y is a multiple of the other.
6. Let V be a vector space over a field F. Let $x \in V$ with $x \neq \mathbf{0}$. Then $\{x\}$ is a linearly independent set.
7. Let V be a vector space over a field F.
(a) Let S be a finite set of linearly independent vectors from V and let $v \in V$ where $v \notin S$. Then $S \cup\{v\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.
(b) Suppose that $V \neq\{\mathbf{0}\}$ is spanned by some finite set S. Prove that some subset of S is a basis for V. Thus V is finite-dimensional.
8. Let W_{1} and W_{2} be subspaces of a vector space V. Suppose that $\operatorname{dim}\left(W_{1}\right)=m$ and $\operatorname{dim}\left(W_{2}\right)=n$ and $m \leq n$.
(a) Prove that $\operatorname{dim}\left(W_{1} \cap W_{2}\right) \leq m=\min \left(\operatorname{dim}\left(W_{1}\right), \operatorname{dim}\left(W_{2}\right)\right)$
(b) Prove that $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq m+n$
9. (This problem shows how to extend a basis from a subspace of a finite-dimensional vector space to the entire space.) Let V be a finitedimensional vector space of dimension $n \neq 0$ over a field F. Let W be a subspace of V with $W \neq\{\mathbf{0}\}$. In class we showed that W must be finite-dimensional and hence have a basis $\beta=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ with $1 \leq k \leq n$. Prove that there exist vectors v_{k+1}, \ldots, v_{n} from $V \backslash W$ such that $\beta^{\prime}=\left\{w_{1}, w_{2}, \ldots, w_{k}, v_{k+1}, \ldots, v_{n}\right\}$ is a basis for V.

