Math 2550
 HW 2 - Part 2
 Matrices

1. Suppose that A, B, and C are 2×2 matrices. Let I be the 2×2 identity matrix. Let O be the 2×2 zero matrix. Let α and β be real numbers.
(a) Prove that $(B+C) A=B A+C A$
(b) Prove that $I A=A$
(c) Prove that $A+0=A$
(d) Prove that $(\alpha+\beta) A=\alpha A+\beta A$.
(e) Prove that $A(B C)=(A B) C$
(f) Prove that $(A+B)^{T}=A^{T}+B^{T}$
2. Suppose that A, B, C, D are $n \times n$ matrices (that is, they are square and all of the same size). Use the properties of matrices from class to prove the following.
(a) $(A+B)(C+D)=A C+A D+B C+B D$
(b) $(A+B+C) D=A D+B D+C D$
(c) $(A+B+C)^{T}=A^{T}+B^{T}+C^{T}$
