Math 5800 Homework # 2 4650 review

- 1. Let $(b_n)_{n=1}^{\infty}$ be a non-decreasing sequence of real numbers that converges to L. Prove that $b_n \leq L$ for all $n \geq 1$.
- 2. Let $(a_n)_{n=1}^{\infty}$ be a non-increasing sequence of real numbers with $\lim_{n \to \infty} a_n = L$. Prove that $a_n \ge L$ for all $n \ge 1$.
- 3. Given $a, b \in \mathbb{R}$ define $\max\{a, b\}$ and $\min\{a, b\}$ as follows:

 $\max\{a,b\} = \begin{cases} a & \text{if } b \leq a \\ b & \text{if } a < b \end{cases} \quad \text{and} \quad \min\{a,b\} = \begin{cases} a & \text{if } a \leq b \\ b & \text{if } b < a \end{cases}$

Let $s, t \in \mathbb{R}$ and let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be sequences of real numbers. Suppose that s_n converges to s and t_n converges to t.

- (a) Prove that the sequence $(\max\{s_n, t_n\})_{n=1}^{\infty}$ converges to $\max\{s, t\}$.
- (b) Prove that the sequence $(\min\{s_n, t_n\})_{n=1}^{\infty}$ converges to $\min\{s, t\}$.

[The above problem is from Weir page 7, problem 2. Here's a hint: Given $\epsilon > 0$ there exists N > 0 such that

 $s - \epsilon < s_n < s + \epsilon$ and $t - \epsilon < t_n < t + \epsilon$

for $n \geq N$. From this it follows that

$$\max\{s,t\} - \epsilon < \max\{s_n, t_n\} < \max\{s,t\} + \epsilon$$

for $n \geq N$. Similarly for min.]

4. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers. Prove that if (a_n) is a convergent sequence, then it is a bounded sequence.

To prove the above statement, follow these steps:

(a) Let L be the limit of (a_n) . Pick $\epsilon = 1$. Show that there exists an N > 0 where

$$|a_n| \le |L| + 1$$

for all $n \geq N$.

(b) Show that $|a_n| \le max\{|a_1|, |a_2|, \dots, |a_{N-1}|, |L|+1\}$ for all $n \ge 1.$]