Math 5800
 Homework \# 2
 4650 review

1. Let $\left(b_{n}\right)_{n=1}^{\infty}$ be a non-decreasing sequence of real numbers that converges to L. Prove that $b_{n} \leq L$ for all $n \geq 1$.
2. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a non-increasing sequence of real numbers with $\lim _{n \rightarrow \infty} a_{n}=$ L. Prove that $a_{n} \geq L$ for all $n \geq 1$.
3. Given $a, b \in \mathbb{R}$ define $\max \{a, b\}$ and $\min \{a, b\}$ as follows:
$\max \{a, b\}=\left\{\begin{array}{ll}a & \text { if } b \leq a \\ b & \text { if } a<b\end{array} \quad\right.$ and $\quad \min \{a, b\}= \begin{cases}a & \text { if } a \leq b \\ b & \text { if } b<a\end{cases}$
Let $s, t \in \mathbb{R}$ and let $\left(s_{n}\right)_{n=1}^{\infty}$ and $\left(t_{n}\right)_{n=1}^{\infty}$ be sequences of real numbers. Suppose that s_{n} converges to s and t_{n} converges to t.
(a) Prove that the sequence $\left(\max \left\{s_{n}, t_{n}\right\}\right)_{n=1}^{\infty}$ converges to $\max \{s, t\}$.
(b) Prove that the sequence $\left(\min \left\{s_{n}, t_{n}\right\}\right)_{n=1}^{\infty}$ converges to $\min \{s, t\}$.
[The above problem is from Weir page 7, problem 2. Here's a hint: Given $\epsilon>0$ there exists $N>0$ such that

$$
s-\epsilon<s_{n}<s+\epsilon \quad \text { and } \quad t-\epsilon<t_{n}<t+\epsilon
$$

for $n \geq N$. From this it follows that

$$
\max \{s, t\}-\epsilon<\max \left\{s_{n}, t_{n}\right\}<\max \{s, t\}+\epsilon
$$

for $n \geq N$. Similarly for min.]
4. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Prove that if $\left(a_{n}\right)$ is a convergent sequence, then it is a bounded sequence.
[To prove the above statement, follow these steps:
(a) Let L be the limit of $\left(a_{n}\right)$. Pick $\epsilon=1$. Show that there exists an $N>0$ where

$$
\left|a_{n}\right| \leq|L|+1
$$

for all $n \geq N$.
(b) Show that $\left|a_{n}\right| \leq \max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N-1}\right|,|L|+1\right\}$ for all $n \geq 1$.]

