Math 465 - Homework \# 2
 Limits of sequences

1. The sequence $\left(\frac{1}{\sqrt{n}}\right)$ has limit 0 as you will prove in the next exercise. For each of $\epsilon=0.01,0.001,0.0001$ determine an integer N such that $\left|\frac{1}{\sqrt{n}}-0\right|<\epsilon$ for all $n \geq N$.
2. Determine a value of N such that if $n \geq N$ then $\left|\frac{n}{n^{2}+1}-0\right|<0.0001$.
3. Use the definition of limit to show that the limit of the sequence exists or does not exist.
(a) Show that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$.
(b) Show that $\lim _{n \rightarrow \infty} \frac{n+2}{5 n-3}=\frac{1}{5}$.
(c) Show that $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})=0$
(d) Show that $\lim _{n \rightarrow \infty} n^{4}$ does not exist.
(e) Show that $\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n^{2}+1}=\frac{1}{2}$.
(f) Show that $\lim _{n \rightarrow \infty} \frac{\sqrt{n^{2}+1}}{n!}=0$
(g) Show that $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$
(h) Show that $\lim _{n \rightarrow \infty} \frac{n^{2}}{n+1}$ does not exist.
(i) Show that $\lim _{n \rightarrow \infty}\left(-n^{2}+1\right)$ does not exist.
4. Let $\left(a_{n}\right)$ be a convergent sequence that converges to A. Let α be a real number. Prove that the sequence $\left(\alpha a_{n}\right)$ converges to αA.
5. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be convergent sequences that converge to A and B, respectively. Suppose that α and β are real numbers. Prove that the sequence $\left(\alpha a_{n}+\beta b_{n}\right)$ converges to $\alpha A+\beta B$.
6. (Squeeze Theorem) Suppose that $\left(a_{n}\right),\left(b_{n}\right)$, and $\left(c_{n}\right)$ are sequences of real numbers such that $a_{n} \leq b_{n} \leq c_{n}$ for all n. If both $\left(a_{n}\right)$ and $\left(c_{n}\right)$ both converge to L, then $\left(b_{n}\right)$ converges to L.
7. Suppose that $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are sequences of real numbers such that $a_{n} \leq$ b_{n} for all n. If both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge to A and B, respectively, then $A \leq B$.
8. Prove the following:
(a) Let $\left(s_{n}\right)$ be a convergent sequence of real numbers such that $s_{n} \neq 0$ for all n. Suppose that $\lim _{n \rightarrow \infty} s_{n}=s$ where $s \neq 0$. Prove that there exists $M>0$ such that $\left|s_{n}\right|>M$ for all n.
(b) Let $\left(s_{n}\right)$ be a convergent sequence of real numbers such that $s_{n} \neq 0$ for all n. Suppose that $\lim _{n \rightarrow \infty} s_{n}=s$ where $s \neq 0$. Prove that $\left(\frac{1}{s_{n}}\right)$ converges to $\frac{1}{s}$.
9. Suppose that $\left(a_{n}\right)$ is a Cauchy sequence. Using the definition of Cauchy sequence, prove that $\left(a_{n}\right)$ is a bounded sequence.
