Math 3450 - Homework # 2 Set Theory

- 1. Let $A = \{1, 5, -12, 100, 1/3, \pi\}$, $B = \{5, 1, -12, 18, -1/3\}$, $C = \{10, -1, 0\}$, $D = \{1, 2\}$, and $E = \{1, -1\}$. Calculate the following:
 - (a) $A \cup B$ Solution: $\{1, 5, -12, 100, 1/3, \pi, 18, -1/3\}$
 - (b) $A \cap B$ Solution: $\{1, 5, -12\}$
 - (c) $A \cap C$ Solution: \emptyset
 - (d) $A \cap \emptyset$ Solution: \emptyset
 - (e) $B \cup \emptyset$ Solution: B
 - (f) $D \times E$ Solution: {(1,1), (1,-1), (2,1), (2,-1)}
 - (g) $(D \cap A) \times (E \cup D)$ **Solution:** $D \cap A = \{1\}, E \cup D = \{1, 2, -1\}, (D \cap A) \times (E \cup D) = \{(1, 1), (1, 2), (1, -1)\}$
 - (h) $C \times D$ Solution: {(10, 1), (-1, 1), (0, 1), (10, 2), (-1, 2), (0, 2)}
 - (i) A B
 Solution: {100, 1/3, π}
 - (j) C ASolution: C
 - (k) $A \emptyset$ Solution: A
- 2. Let $A = \{2k \mid k \in \mathbb{Z}\}$ and $B = \{3n \mid n \in \mathbb{Z}\}$. Prove that $A \cap B = \{6m \mid m \in \mathbb{Z}\}$.

Proof. (\subseteq) First we show that $A \cap B \subseteq \{6m \mid m \in \mathbb{Z}\}$. Suppose that $x \in A \cap B$. Then $x \in A$ and $x \in B$. Then x = 2k and x = 3n where $k, n \in \mathbb{Z}$. Thus 2k = 3n. Therefore, 3n is even. Since an odd integer multiplied by and odd integer is odd, we cannot have that n is odd. Therefore n is even.

So n = 2l where $l \in \mathbb{Z}$. Thus $x = 3n = 3(2l) = 6l \in \{6m \mid m \in \mathbb{Z}\}.$ So $A \cap B \subseteq \{6m \mid m \in \mathbb{Z}\}.$

(⊇)

Now we show that $\{6m \mid m \in \mathbb{Z}\} \subseteq A \cap B$. Let $x \in \{6m \mid m \in \mathbb{Z}\}$. Then x = 6m where $m \in \mathbb{Z}$. Note that x = 6m = 2(3m) = 3(2m). Hence $x \in A$ and $x \in B$. Thus $x \in A \cap B$. So $\{6m \mid m \in \mathbb{Z}\} \subseteq A \cap B$.

Therefore by (\subseteq) and (\supseteq) we get that $A \cap B = \{6m \mid m \in \mathbb{Z}\}.$

3. Let A, B, and C be sets. Prove that if $A \subseteq B$, then $A - C \subseteq B - C$.

Proof. Let $x \in A - C$. We will show that $x \in B - C$. We know that $x \in A$ and $x \notin C$, because $x \in A - C$. Since $x \in A$ and $A \subseteq B$ we have that $x \in B$. Since $x \in B$ and $x \notin C$ it follows that $x \in B - C$. Therefore $A - C \subseteq B - C$.

4. Let A and B be sets. Prove that $A \subseteq B$ if and only if $A - B = \emptyset$.

Proof 1 - by contraposition. In this version of the proof we will use contraposition. Recall that P iff Q is equivalent to $\neg P$ iff $\neg Q$. Thus " $A \subseteq B$ if and only if $A - B = \emptyset$ " is equivalent to " $A \not\subseteq B$ if and only if $A - B \neq \emptyset$ ". We instead prove this second statement.

 (\Rightarrow) Suppose that $A \not\subseteq B$.

This means that there exists an $x \in A$ with $x \notin B$.

Thus there exists x with $x \in A - B$.

So $A - B \neq \emptyset$.

(\Leftarrow) Suppose that $A - B \neq \emptyset$.

Then there exists $x \in A - B$.

So $x \in A$ and $x \notin B$.

Thus $A \not\subseteq B$.

Proof 2 - by contradiction. (\Rightarrow) First, we will show that if $A \subseteq B$, then $A - B = \emptyset$. We will prove this by contradiction. Suppose that $A \subseteq B$, but $A - B \neq \emptyset$. Then there exists $x \in A - B$. So $x \in A$ and $x \notin B$. But $A \subseteq B$, so $x \in A$ implies that $x \in B$. Contradiction. Therefore $A - B = \emptyset$. (\Leftarrow)

Next, we will show that if $A - B = \emptyset$, then $A \subseteq B$. Suppose $x \in A$. We will show that $x \in B$. Suppose to the contrary that $x \notin B$. Then $x \in A - B$, since $x \in A$ and $x \notin B$. But $A - B = \emptyset$. Contradiction. Therefore $x \in B$. Therefore $A \subseteq B$.

5. Let A, B, and C be sets. Prove that if $A \subseteq B$, then $A \cup C \subseteq B \cup C$.

Proof. Suppose $x \in A \cup C$. We will show that $x \in B \cup C$. We know that $x \in A$ or $x \in C$. Case 1: Suppose that $x \in A$. Since $A \subseteq B$ we have that $x \in B$. Thus $x \in B$ and $x \in C$. So $x \in B \cup C$. Case 2: Suppose that $x \in C$. Then $x \in B \cup C$. In either case above, we get that $x \in B \cup C$. So $A \cup C \subseteq B \cup C$.

6. Let A, B, and C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

Proof. (\subseteq) First, we will show that $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. Suppose that $(x, y) \in A \times (B \cap C)$. Then $x \in A$ and $y \in B \cap C$. Since $y \in B \cap C$, we have that $y \in B$ and $y \in C$. Since $x \in A$ and $y \in B$, we have that $(x, y) \in A \times B$. Since $x \in A$ and $y \in C$, we have that $(x, y) \in A \times C$. So $(x, y) \in (A \times B) \cap (A \times C)$. Therefore $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$. (2) Next, we will show that $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$. Suppose that $(x, y) \in (A \times B) \cap (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$. Since $(x, y) \in A \times B$ we get that $x \in A$ and $y \in B$. Since $(x, y) \in A \times C$ we get that $x \in A$ and $y \in C$. So $y \in B \cap C$, because $y \in B$ and $y \in C$. Thus $(x, y) \in A \times (B \cap C)$, because $x \in A$ and $y \in B \cap C$. Ergo, $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

Therefore by (\subseteq) and (\supseteq) we get that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

7. Let A, B, and C be sets. Prove or disprove: If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.

Solution:

False. Here's a counterexample: $A = \{1\}, B = \{1, 2\}, C = \{2\}.$

8. Let $A_n = \{x \in \mathbb{Z} \mid -n \leq x \leq n\}$. List the elements in the sets A_1, A_2, A_3 , and A_4 . Then calculate the following sets $\bigcap_{i=2}^{\infty} A_n$ and $\bigcup_{i=5}^{\infty} A_n$. Solution:

 $A_{1} = \{-1, 0, 1\}, A_{2} = \{-2, -1, 0, 1, 2\}, A_{3} = \{-3, -2, -1, 0, 1, 2, 3\}, A_{4} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ $\bigcap_{i=2}^{\infty} A_{n} = \{-2, -1, 0, 1, 2\}$ $\bigcup_{i=5}^{\infty} A_{n} = \mathbb{Z}$

- 9. Calculate the following intersections and unions.
 - (a) Calculate $\bigcup_{n=1}^{\infty} A_n$ and $\bigcap_{n=1}^{\infty} A_n$ where $A_n = (-n, n)$.

Solution:

$$\bigcup_{n=1}^{\infty} A_n = \mathbb{R}$$

$$\bigcap_{n=1}^{\infty} A_n = (-1, 1)$$

(b) Calculate
$$\bigcup_{n=2}^{\infty} A_n \text{ and } \bigcap_{n=2}^{\infty} A_n \text{ where } A_n = (1/n, 1).$$

Solution:

 $\bigcup_{n=2}^{\infty} A_n = (0,1)$ $\bigcap_{n=2}^{\infty} A_n = (1/2,1)$

(c) Calculate $\bigcup_{n=3}^{\infty} A_n$ and $\bigcap_{n=3}^{\infty} A_n$ where $A_n = (2 + 1/n, n)$.

Solution:

 $\bigcup_{n=3}^{\infty} A_n = (2, \infty)$ $\bigcap_{n=3}^{\infty} A_n = (2 + 1/3, 3) = (7/3, 3)$

10. Let A, B, and C be sets. Prove that $A \cap (B \cap C) = (A \cap B) \cap C$.

Proof. (\subseteq) First, we will show that $A \cap (B \cap C) \subseteq (A \cap B) \cap C$. Suppose $x \in A \cap (B \cap C)$. Then $x \in A$ and $x \in B \cap C$. So $x \in A$ and $x \in B$ and $x \in C$. Since $x \in A$ and $x \in B$ we have that $x \in A \cap B$. So $x \in (A \cap B) \cap C$, because $x \in A \cap B$ and $x \in C$. Therefore, $A \cap (B \cap C) \subseteq (A \cap B) \cap C$. (\supseteq) Now we will show that $(A \cap B) \cap C \subseteq A \cap (B \cap C)$. Let $x \in (A \cap B) \cap C$. Then $x \in (A \cap B) \cap C$. Then $x \in (A \cap B)$ and $x \in C$. Thus $x \in A$ and $x \in B$ and $x \in C$. Since $x \in B$ and $x \in C$ we have that $x \in B \cap C$. Hence $x \in A \cap (B \cap C)$ since $x \in A$ and $x \in B \cap C$.

Therefore, by (\subseteq) and (\supseteq) we get that $A \cap (B \cap C) = (A \cap B) \cap C$. \Box

11. Let A, B, and C be sets. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Proof. (\subseteq) First, we will show that $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Let $x \in A \cup (B \cap C)$. We know $x \in A$ or $x \in B \cap C$. <u>Case 1</u>: Suppose that $x \in A$. Then $x \in A \cup B$, since $x \in A$. Also, $x \in A \cup C$, since $x \in A$. Thus $x \in A \cup C$, since $x \in A$. Thus $x \in A \cup B$ and $x \in A \cup C$. So, $x \in (A \cup B) \cap (A \cup C)$. <u>Case 2</u>: Suppose that $x \in B \cap C$. Then $x \in B$ and $x \in C$. So $x \in A \cup B$, because $x \in B$. Also $x \in A \cup C$, because $x \in C$. Thus $x \in A \cup B$ and $x \in A \cup C$. So $x \in (A \cup B) \cap (A \cup C)$.

In either case, we have $x \in (A \cup B) \cap (A \cup C)$. So $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$.

(2) Next, we will show that $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Suppose that $x \in (A \cup B) \cap (A \cup C)$. Then $x \in (A \cup B)$ and $x \in (A \cup C)$. So $x \in A$ or $x \in B$, because $x \in (A \cup B)$. Case 1: Suppose that $x \in A$. Then $x \in A \cup (B \cap C)$, because $x \in A$. Case 2: Suppose that $x \in B$. We know that $x \in A$ or $x \in C$, because $x \in (A \cup C)$ (from above before case 1). We break case 2 into two sub-cases.

<u>Case 2i</u>: Suppose that $x \in A$.

Then $x \in A \cup (B \cap C)$, because $x \in A$. <u>Case 2ii</u>: Suppose that $x \in C$. Then $x \in B \cap C$, because $x \in B$ and $x \in C$. So $x \in A \cup (B \cap C)$, because $x \in B \cap C$.

In every case, we have $x \in A \cup (B \cap C)$. Therefore $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

Therefore, by (\subseteq) and (\supseteq) we get that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- 12. Let A, B, and C be sets. Prove that if $A \subseteq B$ then $A \subseteq B \cup C$. **Solution:** Suppose that $A \subseteq B$. We use this to show that $A \subseteq B \cup C$. Let $x \in A$. Since $A \subseteq B$ and $x \in A$, we know that $x \in B$. Since $x \in B$, we know that $x \in B \cup C$. Therefore, if $x \in A$, then $x \in B \cup C$ is true. So $A \subseteq B \cup C$.
- 13. Let A = {1, x, 5}. List the elements of the power set P(A).
 Solution:
 Ø, {1}, {x}, {5}, {1, x}, {1, 5}, {x, 5}, A
- 14. Let A and B be sets.
 - (a) Prove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Proof. (\subseteq) First, we will show that $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. Suppose that $S \in \mathcal{P}(A \cap B)$. We will show that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. We know that $S \subseteq A \cap B$, because $S \in \mathcal{P}(A \cap B)$. So every element of S is in $A \cap B$. So every element of S is in both A and B. So $S \subseteq A$ and $S \subseteq B$. So $S \in \mathcal{P}(A)$ and $\mathcal{P}(B)$. So $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. Therefore $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$. **(2)** Next, we will show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$. Suppose that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. We will show that $S \in \mathcal{P}(A \cap B)$. We know that $S \in \mathcal{P}(A)$ and $\mathcal{P}(B)$, because $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. So $S \subseteq A$ and $S \subseteq B$. So every element of S is in both A and B. So every element of S is in $A \cap B$. So $S \subseteq A \cap B$. So $S \in \mathcal{P}(A \cap B)$. Therefore $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.

Therefore, by (\subseteq) and (\supseteq) we get that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

(b) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Proof. Suppose that $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Then $S \in \mathcal{P}(A)$ or $S \in \mathcal{P}(B)$. <u>Case 1</u>: Suppose that $S \in \mathcal{P}(A)$. Then $S \subseteq A$. So $S \subseteq A \cup B$, by problem 12 above. <u>Case 2</u>: $S \in \mathcal{P}(B)$ Then $S \subseteq B$. So $S \subseteq A \cup B$, by problem 12 above. In either case, we have $S \subseteq A \cup B$. So $S \in \mathcal{P}(A \cup B)$. Thus, if $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $S \in \mathcal{P}(A \cup B)$. Therefore $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

(c) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.

Solution:

 $A = \{1\}, B = \{2\}$ $\mathcal{P}(A) = \{\emptyset, \{1\}\}$ $\mathcal{P}(B) = \{\emptyset, \{2\}\}$ $\mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}$ $A \cup B = \{1, 2\}$ $\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

15. Let A and B be sets. Prove that A - B and B are disjoint.

Proof. We will show that $(A - B) \cap B = \emptyset$. We do this by contradiction. Suppose that $(A - B) \cap B \neq \emptyset$. Then there exists $x \in (A - B) \cap B$. So $x \in A - B$ and $x \in B$. But $x \in A - B$ implies that $x \in A$ and $x \notin B$. Thus we have that $x \in B$ and $x \notin B$. Contradiction. (We cannot have both $x \in B$ and $x \notin B$.) Therefore $(A - B) \cap B = \emptyset$. Therefore A - B and B are disjoint.

16. Let A, B, C, and D be sets. Prove that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof. (\subseteq) First, we will show that $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. Suppose $(x, y) \in (A \times B) \cap (C \times D)$. Then $(x, y) \in (A \times B)$ and $(x, y) \in (C \times D)$. So $x \in A$ and $y \in B$, because $(x, y) \in (A \times B)$. Also, $x \in C$ and $y \in D$, because $(x, y) \in (C \times D)$. So $x \in A \cap C$, because $x \in A$ and $x \in C$. Also $y \in B \cap D$, because $y \in B$ and $y \in D$. So $(x, y) \in (A \cap C) \times (B \cap D)$, because $x \in A \cap C$ and $y \in B \cap D$. Therefore $(A \times B) \cap (C \times D) \subseteq (A \cap C) \times (B \cap D)$. (2) Next, we will show that $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$. Suppose that $(x, y) \in (A \cap C) \times (B \cap D)$. Then $x \in A \cap C$ and $y \in B \cap D$. So $x \in A$ and $x \in C$, because $x \in A \cap C$. Also $y \in B$ and $y \in D$, because $y \in B \cap D$. So $(x, y) \in A \times B$, because $x \in A$ and $y \in B$. Also, $(x, y) \in C \times D$, because $x \in C$ and $y \in D$. Therefore $(x, y) \in (A \times B) \cap (C \times D)$, because $(x, y) \in A \times B$ and $(x, y) \in C \times D$. So $(A \cap C) \times (B \cap D) \subseteq (A \times B) \cap (C \times D)$.

Therefore, by (\subseteq) and (\supseteq) we get that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.