## Math 3450 - Homework \# 2 Set Theory

1. Let $A=\{1,5,-12,100,1 / 3, \pi\}, B=\{5,1,-12,18,-1 / 3\}, C=\{10,-1,0\}$, $D=\{1,2\}$, and $E=\{1,-1\}$. Calculate the following:
(a) $A \cup B$

Solution: $\{1,5,-12,100,1 / 3, \pi, 18,-1 / 3\}$
(b) $A \cap B$

Solution: $\{1,5,-12\}$
(c) $A \cap C$

Solution: $\emptyset$
(d) $A \cap \emptyset$

Solution: $\emptyset$
(e) $B \cup \emptyset$

Solution: $B$
(f) $D \times E$

Solution: $\{(1,1),(1,-1),(2,1),(2,-1)\}$
(g) $(D \cap A) \times(E \cup D)$

Solution: $D \cap A=\{1\}, E \cup D=\{1,2,-1\},(D \cap A) \times(E \cup D)=$ $\{(1,1),(1,2),(1,-1)\}$
(h) $C \times D$

Solution: $\{(10,1),(-1,1),(0,1),(10,2),(-1,2),(0,2)\}$
(i) $A-B$

Solution: $\{100,1 / 3, \pi\}$
(j) $C-A$

Solution: $C$
(k) $A-\emptyset$

Solution: $A$
2. Let $A=\{2 k \mid k \in \mathbb{Z}\}$ and $B=\{3 n \mid n \in \mathbb{Z}\}$. Prove that $A \cap B=$ $\{6 m \mid m \in \mathbb{Z}\}$.

## Proof. (؟)

First we show that $A \cap B \subseteq\{6 m \mid m \in \mathbb{Z}\}$.
Suppose that $x \in A \cap B$.
Then $x \in A$ and $x \in B$.
Then $x=2 k$ and $x=3 n$ where $k, n \in \mathbb{Z}$.
Thus $2 k=3 n$.
Therefore, $3 n$ is even.
Since an odd integer multiplied by and odd integer is odd, we cannot have that $n$ is odd.

Therefore $n$ is even.
So $n=2 l$ where $l \in \mathbb{Z}$.
Thus $x=3 n=3(2 l)=6 l \in\{6 m \mid m \in \mathbb{Z}\}$.
So $A \cap B \subseteq\{6 m \mid m \in \mathbb{Z}\}$.
(〕)
Now we show that $\{6 m \mid m \in \mathbb{Z}\} \subseteq A \cap B$.
Let $x \in\{6 m \mid m \in \mathbb{Z}\}$.
Then $x=6 m$ where $m \in \mathbb{Z}$.
Note that $x=6 m=2(3 m)=3(2 m)$.
Hence $x \in A$ and $x \in B$.
Thus $x \in A \cap B$.
So $\{6 m \mid m \in \mathbb{Z}\} \subseteq A \cap B$.

Therefore by (ㄷ) and (ㄱ) we get that $A \cap B=\{6 m \mid m \in \mathbb{Z}\}$.
3. Let $A, B$, and $C$ be sets. Prove that if $A \subseteq B$, then $A-C \subseteq B-C$.

Proof. Let $x \in A-C$.
We will show that $x \in B-C$.
We know that $x \in A$ and $x \notin C$, because $x \in A-C$.
Since $x \in A$ and $A \subseteq B$ we have that $x \in B$.

Since $x \in B$ and $x \notin C$ it follows that $x \in B-C$.
Therefore $A-C \subseteq B-C$.
4. Let $A$ and $B$ be sets. Prove that $A \subseteq B$ if and only if $A-B=\emptyset$.

Proof 1-by contraposition. In this version of the proof we will use contraposition. Recall that $P$ iff $Q$ is equivalent to $\neg P$ iff $\neg Q$. Thus " $A \subseteq B$ if and only if $A-B=\emptyset$ " is equivalent to " $A \nsubseteq B$ if and only if $A-B \neq \emptyset$ ". We instead prove this second statement.
$(\Rightarrow)$ Suppose that $A \nsubseteq B$.
This means that there exists an $x \in A$ with $x \notin B$.
Thus there exists $x$ with $x \in A-B$.
So $A-B \neq \emptyset$.
$(\Leftarrow)$ Suppose that $A-B \neq \emptyset$.
Then there exists $x \in A-B$.
So $x \in A$ and $x \notin B$.
Thus $A \nsubseteq B$.

Proof 2-by contradiction. ( $\Rightarrow$ )
First, we will show that if $A \subseteq B$, then $A-B=\emptyset$.
We will prove this by contradiction.
Suppose that $A \subseteq B$, but $A-B \neq \emptyset$.
Then there exists $x \in A-B$.
So $x \in A$ and $x \notin B$.
But $A \subseteq B$, so $x \in A$ implies that $x \in B$.
Contradiction.
Therefore $A-B=\emptyset$.

## $(\Leftarrow)$

Next, we will show that if $A-B=\emptyset$, then $A \subseteq B$.
Suppose $x \in A$. We will show that $x \in B$.

Suppose to the contrary that $x \notin B$.
Then $x \in A-B$, since $x \in A$ and $x \notin B$.
But $A-B=\emptyset$.
Contradiction.
Therefore $x \in B$.
Therefore $A \subseteq B$.
5. Let $A, B$, and $C$ be sets. Prove that if $A \subseteq B$, then $A \cup C \subseteq B \cup C$.

Proof. Suppose $x \in A \cup C$.
We will show that $x \in B \cup C$.
We know that $x \in A$ or $x \in C$.
Case 1: Suppose that $x \in A$.
Since $A \subseteq B$ we have that $x \in B$.
Thus $x \in B$ and $x \in C$.
So $x \in B \cup C$.
Case 2: Suppose that $x \in C$.
Then $x \in B \cup C$.
In either case above, we get that $x \in B \cup C$.
So $A \cup C \subseteq B \cup C$.
6. Let $A, B$, and $C$ be sets. Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.

Proof. (С)
First, we will show that $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$.
Suppose that $(x, y) \in A \times(B \cap C)$.
Then $x \in A$ and $y \in B \cap C$.
Since $y \in B \cap C$, we have that $y \in B$ and $y \in C$.
Since $x \in A$ and $y \in B$, we have that $(x, y) \in A \times B$.
Since $x \in A$ and $y \in C$, we have that $(x, y) \in A \times C$.

So $(x, y) \in(A \times B) \cap(A \times C)$.
Therefore $A \times(B \cap C) \subseteq(A \times B) \cap(A \times C)$.
(2)

Next, we will show that $(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$.
Suppose that $(x, y) \in(A \times B) \cap(A \times C)$.
Then $(x, y) \in A \times B$ and $(x, y) \in A \times C$.
Since $(x, y) \in A \times B$ we get that $x \in A$ and $y \in B$.
Since $(x, y) \in A \times C$ we get that $x \in A$ and $y \in C$.
So $y \in B \cap C$, because $y \in B$ and $y \in C$.
Thus $(x, y) \in A \times(B \cap C)$, because $x \in A$ and $y \in B \cap C$.
Ergo, $(A \times B) \cap(A \times C) \subseteq A \times(B \cap C)$.
Therefore by (С) and (ఇ) we get that $A \times(B \cap C)=(A \times B) \cap(A \times$ $C)$.
7. Let $A, B$, and $C$ be sets. Prove or disprove: If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.

## Solution:

False. Here's a counterexample: $A=\{1\}, B=\{1,2\}, C=\{2\}$.
8. Let $A_{n}=\{x \in \mathbb{Z} \mid-n \leq x \leq n\}$. List the elements in the sets $A_{1}, A_{2}$, $A_{3}$, and $A_{4}$. Then calculate the following sets $\bigcap_{i=2}^{\infty} A_{n}$ and $\bigcup_{i=5}^{\infty} A_{n}$.

## Solution:

$A_{1}=\{-1,0,1\}, A_{2}=\{-2,-1,0,1,2\}, A_{3}=\{-3,-2,-1,0,1,2,3\}$, $A_{4}=\{-4,-3,-2,-1,0,1,2,3,4\}$
$\bigcap_{i=2}^{\infty} A_{n}=\{-2,-1,0,1,2\}$
$\bigcup_{i=5}^{\infty} A_{n}=\mathbb{Z}$
9. Calculate the following intersections and unions.
(a) Calculate $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ where $A_{n}=(-n, n)$.

## Solution:

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty} A_{n}=\mathbb{R} \\
& \bigcap_{n=1}^{\infty} A_{n}=(-1,1)
\end{aligned}
$$

(b) Calculate $\bigcup_{n=2}^{\infty} A_{n}$ and $\bigcap_{n=2}^{\infty} A_{n}$ where $A_{n}=(1 / n, 1)$.

## Solution:

$\bigcup_{n=2}^{\infty} A_{n}=(0,1)$
$\bigcap_{n=2}^{\infty} A_{n}=(1 / 2,1)$
(c) Calculate $\bigcup_{n=3}^{\infty} A_{n}$ and $\bigcap_{n=3}^{\infty} A_{n}$ where $A_{n}=(2+1 / n, n)$.

## Solution:

$$
\begin{aligned}
& \bigcup_{n=3}^{\infty} A_{n}=(2, \infty) \\
& \bigcap_{n=3}^{\infty} A_{n}=(2+1 / 3,3)=(7 / 3,3)
\end{aligned}
$$

10. Let $A, B$, and $C$ be sets. Prove that $A \cap(B \cap C)=(A \cap B) \cap C$.

Proof. (С) First, we will show that $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
Suppose $x \in A \cap(B \cap C)$.
Then $x \in A$ and $x \in B \cap C$.
So $x \in A$ and $x \in B$ and $x \in C$.
Since $x \in A$ and $x \in B$ we have that $x \in A \cap B$.
So $x \in(A \cap B) \cap C$, because $x \in A \cap B$ and $x \in C$.
Therefore, $A \cap(B \cap C) \subseteq(A \cap B) \cap C$.
(〇) Now we will show that $(A \cap B) \cap C \subseteq A \cap(B \cap C)$.
Let $x \in(A \cap B) \cap C$.
Then $x \in(A \cap B)$ and $x \in C$.
Thus $x \in A$ and $x \in B$ and $x \in C$.
Since $x \in B$ and $x \in C$ we have that $x \in B \cap C$.
Hence $x \in A \cap(B \cap C)$ since $x \in A$ and $x \in B \cap C$.

Therefore, by ( $\subseteq$ ) and $(\supseteq)$ we get that $A \cap(B \cap C)=(A \cap B) \cap C$.
11. Let $A, B$, and $C$ be sets. Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Proof. (С) First, we will show that $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$.
Let $x \in A \cup(B \cap C)$.
We know $x \in A$ or $x \in B \cap C$.
Case 1: Suppose that $x \in A$.
Then $x \in A \cup B$, since $x \in A$.
Also, $x \in A \cup C$, since $x \in A$.
Thus $x \in A \cup B$ and $x \in A \cup C$.
So, $x \in(A \cup B) \cap(A \cup C)$.
Case 2: Suppose that $x \in B \cap C$.
Then $x \in B$ and $x \in C$.
So $x \in A \cup B$, because $x \in B$.
Also $x \in A \cup C$, because $x \in C$.
Thus $x \in A \cup B$ and $x \in A \cup C$.
So $x \in(A \cup B) \cap(A \cup C)$.

In either case, we have $x \in(A \cup B) \cap(A \cup C)$.
So $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$.
(〇) Next, we will show that $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$.
Suppose that $x \in(A \cup B) \cap(A \cup C)$.
Then $x \in(A \cup B)$ and $x \in(A \cup C)$.
So $x \in A$ or $x \in B$, because $x \in(A \cup B)$.
Case 1: Suppose that $x \in A$.
Then $x \in A \cup(B \cap C)$, because $x \in A$.
Case 2: Suppose that $x \in B$.
We know that $x \in A$ or $x \in C$, because $x \in(A \cup C)$ (from above before case 1).

We break case 2 into two sub-cases.
Case 2i: Suppose that $x \in A$.

Then $x \in A \cup(B \cap C)$, because $x \in A$.
Case 2ii: Suppose that $x \in C$.
Then $x \in B \cap C$, because $x \in B$ and $x \in C$.
So $x \in A \cup(B \cap C)$, because $x \in B \cap C$.

In every case, we have $x \in A \cup(B \cap C)$.
Therefore $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$.

Therefore, by ( $\subseteq$ ) and ( $\supseteq$ ) we get that $A \cup(B \cap C)=(A \cup B) \cap(A \cup$ C)
12. Let $A, B$, and $C$ be sets. Prove that if $A \subseteq B$ then $A \subseteq B \cup C$.

Solution: Suppose that $A \subseteq B$.
We use this to show that $A \subseteq B \cup C$.
Let $x \in A$.
Since $A \subseteq B$ and $x \in A$, we know that $x \in B$.
Since $x \in B$, we know that $x \in B \cup C$.
Therefore, if $x \in A$, then $x \in B \cup C$ is true.
So $A \subseteq B \cup C$.
13. Let $A=\{1, x, 5\}$. List the elements of the power set $\mathcal{P}(A)$.

Solution:
$\emptyset,\{1\},\{x\},\{5\},\{1, x\},\{1,5\},\{x, 5\}, A$
14. Let $A$ and $B$ be sets.
(a) Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.

Proof. (С) First, we will show that $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.
Suppose that $S \in \mathcal{P}(A \cap B)$. We will show that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
We know that $S \subseteq A \cap B$, because $S \in \mathcal{P}(A \cap B)$.
So every element of $S$ is in $A \cap B$.

So every element of $S$ is in both $A$ and $B$.
So $S \subseteq A$ and $S \subseteq B$.
So $S \in \mathcal{P}(A)$ and $\mathcal{P}(B)$.
So $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
Therefore $\mathcal{P}(A \cap B) \subseteq \mathcal{P}(A) \cap \mathcal{P}(B)$.
(卫) Next, we will show that $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
Suppose that $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$. We will show that $S \in \mathcal{P}(A \cap B)$.
We know that $S \in \mathcal{P}(A)$ and $\mathcal{P}(B)$, because $S \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
So $S \subseteq A$ and $S \subseteq B$.
So every element of $S$ is in both $A$ and $B$.
So every element of $S$ is in $A \cap B$.
So $S \subseteq A \cap B$.
So $S \in \mathcal{P}(A \cap B)$.
Therefore $\mathcal{P}(A) \cap \mathcal{P}(B) \subseteq \mathcal{P}(A \cap B)$.
Therefore, by ( $\subseteq$ ) and ( $\supseteq$ ) we get that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
(b) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Proof. Suppose that $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$.
Then $S \in \mathcal{P}(A)$ or $S \in \mathcal{P}(B)$.
Case 1: Suppose that $S \in \mathcal{P}(A)$.
Then $S \subseteq A$.
So $S \subseteq A \cup B$, by problem 12 above.
Case 2: $S \in \mathcal{P}(B)$
Then $S \subseteq B$.
So $S \subseteq A \cup B$, by problem 12 above.
In either case, we have $S \subseteq A \cup B$.
So $S \in \mathcal{P}(A \cup B)$.
Thus, if $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$, then $S \in \mathcal{P}(A \cup B)$.
Therefore $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(c) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.

## Solution:

$$
\begin{aligned}
& A=\{1\}, B=\{2\} \\
& \mathcal{P}(A)=\{\emptyset,\{1\}\} \\
& \mathcal{P}(B)=\{\emptyset,\{2\}\} \\
& \mathcal{P}(A) \cup \mathcal{P}(B)=\{\emptyset,\{1\},\{2\}\} \\
& A \cup B=\{1,2\} \\
& \mathcal{P}(A \cup B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}
\end{aligned}
$$

15. Let $A$ and $B$ be sets. Prove that $A-B$ and $B$ are disjoint.

Proof. We will show that $(A-B) \cap B=\emptyset$.
We do this by contradiction.
Suppose that $(A-B) \cap B \neq \emptyset$.
Then there exists $x \in(A-B) \cap B$.
So $x \in A-B$ and $x \in B$.
But $x \in A-B$ implies that $x \in A$ and $x \notin B$.
Thus we have that $x \in B$ and $x \notin B$.
Contradiction. (We cannot have both $x \in B$ and $x \notin B$.)
Therefore $(A-B) \cap B=\emptyset$.
Therefore $A-B$ and $B$ are disjoint.
16. Let $A, B, C$, and $D$ be sets. Prove that $(A \times B) \cap(C \times D)=(A \cap$ $C) \times(B \cap D)$.

Proof. (С) First, we will show that $(A \times B) \cap(C \times D) \subseteq(A \cap C) \times$ $(B \cap D)$.
Suppose $(x, y) \in(A \times B) \cap(C \times D)$.
Then $(x, y) \in(A \times B)$ and $(x, y) \in(C \times D)$.
So $x \in A$ and $y \in B$, because $(x, y) \in(A \times B)$.
Also, $x \in C$ and $y \in D$, because $(x, y) \in(C \times D)$.

So $x \in A \cap C$, because $x \in A$ and $x \in C$.
Also $y \in B \cap D$, because $y \in B$ and $y \in D$.
So $(x, y) \in(A \cap C) \times(B \cap D)$, because $x \in A \cap C$ and $y \in B \cap D$.
Therefore $(A \times B) \cap(C \times D) \subseteq(A \cap C) \times(B \cap D)$.
(〇) Next, we will show that $(A \cap C) \times(B \cap D) \subseteq(A \times B) \cap(C \times D)$.
Suppose that $(x, y) \in(A \cap C) \times(B \cap D)$.
Then $x \in A \cap C$ and $y \in B \cap D$.
So $x \in A$ and $x \in C$, because $x \in A \cap C$.
Also $y \in B$ and $y \in D$, because $y \in B \cap D$.
So $(x, y) \in A \times B$, because $x \in A$ and $y \in B$.
Also, $(x, y) \in C \times D$, because $x \in C$ and $y \in D$.
Therefore $(x, y) \in(A \times B) \cap(C \times D)$, because $(x, y) \in A \times B$ and $(x, y) \in C \times D$.

So $(A \cap C) \times(B \cap D) \subseteq(A \times B) \cap(C \times D)$.

Therefore, by ( $\subseteq$ ) and (〇) we get that $(A \times B) \cap(C \times D)=(A \cap C) \times$ $(B \cap D)$.

