Math 3450 - Homework \# 2
 Set Theory

1. Let $A=\{1,5,-12,100,1 / 3, \pi\}, B=\{5,1,-12,18,-1 / 3\}, C=\{10,-1,0\}$, $D=\{1,2\}$, and $E=\{1,-1\}$. Calculate the following:
(a) $A \cup B$
(b) $A \cap B$
(c) $A \cap C$
(d) $A \cap \emptyset$
(e) $B \cup \emptyset$
(f) $D \times E$
(g) $(D \cap A) \times(E \cup D)$
(h) $C \times D$
(i) $A-B$
(j) $C-A$
(k) $A-\emptyset$
2. Let $A=\{2 k \mid k \in \mathbb{Z}\}$ and $B=\{3 n \mid n \in \mathbb{Z}\}$. Prove that $A \cap B=$ $\{6 m \mid m \in \mathbb{Z}\}$.
3. Let A, B, and C be sets. Prove that if $A \subseteq B$, then $A-C \subseteq B-C$.
4. Let A and B be sets. Prove that $A \subseteq B$ if and only if $A-B=\emptyset$.
5. Let A, B, and C be sets. Prove that if $A \subseteq B$, then $A \cup C \subseteq B \cup C$.
6. Let A, B, and C be sets. Prove that $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
7. Let A, B, and C be sets. Prove or disprove: If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.
8. Let $A_{n}=\{x \in \mathbb{Z} \mid-n \leq x \leq n\}$. List the elements in the sets A_{1}, A_{2}, A_{3}, and A_{4}. Then calculate the following sets $\bigcap_{i=2}^{\infty} A_{n}$ and $\bigcup_{i=5}^{\infty} A_{n}$.
9. Calculate the following intersections and unions.
(a) Calculate $\bigcup_{n=1}^{\infty} A_{n}$ and $\bigcap_{n=1}^{\infty} A_{n}$ where $A_{n}=(-n, n)$.
(b) Calculate $\bigcup_{n=2}^{\infty} A_{n}$ and $\bigcap_{n=2}^{\infty} A_{n}$ where $A_{n}=(1 / n, 1)$.
(c) Calculate $\bigcup_{n=3}^{\infty} A_{n}$ and $\bigcap_{n=3}^{\infty} A_{n}$ where $A_{n}=(2+1 / n, n)$.
10. Let A, B, and C be sets. Prove that $A \cap(B \cap C)=(A \cap B) \cap C$.
11. Let A, B, and C be sets. Prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
12. Let A, B, and C be sets. Prove that if $A \subseteq B$ then $A \subseteq B \cup C$.
13. Let $A=\{1, x, 5\}$. List the elements of the power set $\mathcal{P}(A)$.
14. Let A and B be sets.
(a) Prove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
(b) Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(c) Give an example where $\mathcal{P}(A) \cup \mathcal{P}(B) \neq \mathcal{P}(A \cup B)$.
15. Let A and B be sets. Prove that $A \backslash B$ and B are disjoint.
16. Let A, B, C, and D be sets. Prove that $(A \times B) \cap(C \times D)=(A \cap$ $C) \times(B \cap D)$.
