Math 456

Homework # 2 - Integral Domains

- 1. Calculate the elements of \mathbb{Z}_n^{\times} where n = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.
- 2. Determine which of the following rings are integral domains:
 - (a) $n\mathbb{Z}$ where $n \geq 2$
 - (b) $\mathbb{Z} \times \mathbb{Z}$
 - (c) $\mathbb{Z}_2 \times \mathbb{Z}_3$
 - (d) \mathbb{Z}_5
 - (e) \mathbb{Z}_{106}
 - (f) $M_2(\mathbb{R})$

3. Let R_1 and R_2 be integral domains. Prove that $R_1 \times R_2$ is NOT an integral domain.

4. (a) Let R be an integral domain with identity 1 and S be a subring of R satisfying $1 \in S$. Prove that S is an integral domain. (b) What if $1 \notin S$ but S is still a subring of R?

5. Let R and S be subdomains of an integral domain T. Prove that $R \cap S$ is a subdomain of T.

6. Let R be a ring. We say that $x \in R$ is an **idempotent** of R if $x \cdot x = x$. Show that if R is an integral domain then it only has two idempotents.