Homework \# 2 - Integral Domains

1. Calculate the elements of \mathbb{Z}_{n}^{\times}where $n=3,4,5,6,7,8,9,10,11,12,13,14$.
2. Determine which of the following rings are integral domains:
(a) $n \mathbb{Z}$ where $n \geq 2$
(b) $\mathbb{Z} \times \mathbb{Z}$
(c) $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$
(d) \mathbb{Z}_{5}
(e) \mathbb{Z}_{106}
(f) $M_{2}(\mathbb{R})$
3. Let R_{1} and R_{2} be integral domains. Prove that $R_{1} \times R_{2}$ is NOT an integral domain.
4. (a) Let R be an integral domain with identity 1 and S be a subring of R satisfying $1 \in S$. Prove that S is an integral domain. (b) What if $1 \notin S$ but S is still a subring of R ?
5. Let R and S be subdomains of an integral domain T. Prove that $R \cap S$ is a subdomain of T.
6. Let R be a ring. We say that $x \in R$ is an idempotent of R if $x \cdot x=x$. Show that if R is an integral domain then it only has two idempotents.
