Math 446 - Homework \# 1

In the following problems, x, y, z, m, n are integers.

1. Prove that if $x \mid y$ and $y \mid z$, then $x \mid z$.

Solution: Since $x \mid y$ we have that $x s=y$ for some integer s. Since $y \mid z$ we have that $y t=z$ for some integer t. Therefore, $x(s t)=(x s) t=$ $y t=z$. Hence $x \mid z$.
2. Prove that if $x \mid y$ and $m \mid n$, then $x m \mid y n$.

Solution: Since $x \mid y$ we have that $x s=y$ for some integer s. Since $m \mid n$ we have that $m t=n$ for some integer t. Hence $x m(s t)=(x s)(m t)=$ $y n$. Therefore $x m \mid y n$.
3. Prove that if $x y \mid z$, then $x \mid z$.

Solution: Since $x y \mid z$ we have that $(x y) k=z$ for some integer k. Hence $x(y k)=z$. Thus, $x \mid z$.
4. Prove that $x z \mid y z$ if and only if $x \mid y$.

Solution: Suppose that $x z \mid y z$. Then $(x z) k=y z$ for some integer k. Hence $x k=y$. Thus $x \mid y$.
Now suppose that $x \mid y$. Then there exists an integer n with $x n=y$. Multiplying by z gives us that $(x z) n=y z$. Hence $x z \mid y z$.
5. Prove that if $x \mid(y+z)$ and $x \mid y$, then $x \mid z$.

Solution: Since $x \mid(y+z)$ there exists an integer s with $x s=y+z$. Since $x \mid y$ there exists an integer t with $x t=y$. Therefore,

$$
z=x s-y=x s-x t=x(s-t)
$$

Hence $x \mid z$.
6. Prove that if $x \mid y$ and $x \mid z$, then $x \mid(m y+n z)$.

Solution: Since $x \mid y$ we have that $x s=y$ for some integer s. Since $x \mid z$ we have that $x t=z$ for some integer t. Therefore

$$
m y+n z=m(x s)+n(x t)=x(m s+n t) .
$$

Hence $x \mid(m y+n z)$.
7. Let $n>1$ be an integer.
(a) n is composite if and only if there exist positive integers a and b such that $n=a b$ and $1<a<n$ and $1<b<n$.
Solution: Let $n>1$ be an integer. Suppose that n is composite. Then since n is not prime, there exists a positive integer a that divides n where $1<a<n$. By the definition of division, this means that there exists another positive integer b with $n=a b$. Note that $b=n / a$. Since $1<a<n$ we have that $1>1 / a>1 / n$. Thus $n>n / a>1$. That is, $1<b<n$. This gives us that $n=a b$ where $1<a<n$ and $1<b<n$.
Conversely suppose that $n=a b$ where $1<a<n$ and $1<b<n$. Then n has a positive divisor a that is not equal to 1 or n. Hence n is not prime. That is, n is composite.
(b) n is composite if and only if there exist positive integers a and b such that $n=a b$ and $1<a$ and $1<b$.
Solution: Suppose n is composite. Then from the first part of this exercise, there exists positive integers a and b with $1<a<n$ and $1<b<n$. So $1<a$ and $1<b$.
Suppose now that there exists positive integers a and b with $n=a b$ and $1<a$ and $1<b$. Since $1<a$ we have that $1 / a<1$. Therefore, $n / a<n$. Since $b=n / a$ this gives us that $b<n$. Therefore, b is a divisor of n with $1<b<n$. Thus n cannot be prime since we have a positive divisor that is not equal to 1 or n. So n is composite.
8. Prove that 4 does not divide $n^{2}+2$ for any integer n.

Solution: We prove this by contradiction. Suppose that 4 divides $n^{2}+2$ for some integer n. Then there exists an integer m with $4 m=$ $n^{2}+2$.

Suppose that n is even. Then $n=2 k$ for some integer k. Hence $4 m=4 k^{2}+2$. Thus $2 m=2 k^{2}+1$. This is a contradiction since we can't have an even integer equal to an odd integer.
Suppose that n is odd. Then $n=2 j+1$ for some integer j. Hence $4 m=(2 j+1)^{2}+2=4 j^{2}+4 j+3=2\left(2 j^{2}+2 j+1\right)+1$. Again we have an even integer equal to an odd integer, which can't happen.
Hence there cannot exist an integer n where 4 divides $n^{2}+2$.
9. Prove that any prime of the form $3 k+1$ is of the form $6 s+1$.

Solution: Let p be a prime of the form $3 k+1$ where k is a positive integer.
Suppose that k is even. Then $k=2 s$ for some integer s. Hence $p=3 k+1=6 s+1$, which is what we want to show.
Suppose that k is odd. Then $k=2 t+1$ for some integer t. Hence $p=3 k+1=3(2 t+1)+1=6 t+4=2(3 t+2)$ is even. Since p is prime and p is even, we must have that $p=2$ (since 2 is the only even prime). But then $2=2(3 t+2)$. This implies that $3 t+2=1$. But then $t=-1 / 3$ which isn't an integer. This contradicts the fact that t is an integer. Hence this case, where k is odd, cannot occur.
In summary, if p is a prime of the form $3 k+1$ then k must be even and p is of the form $6 s+1$.
10. Show that $n^{4}+4$ is composite for all $n>1$.

Solution: Before we begin the proof, note that if $n=1$ then $n^{4}+4=5$ which is prime, that is, not composite. This is why we must have $n>1$.
We break the proof into two cases.
Suppose that $n>1$ is even. Then $n=2 k$ for some integer $k \geq 1$. Hence

$$
n^{4}+4=16 k^{4}+4=4\left(4 k^{4}+1\right)
$$

Note that $4 k^{4}+1 \geq 4(1)^{4}+1=5$. Hence we have factored $n^{4}+4$ into a product $x y$ with $x>1$ and $y>1$. Thus, by exercise $7 \mathrm{~b}, n^{4}+4$ is composite.
Suppose that n is odd. Then $n=2 j+1$ for some integer $j \geq 1$. Hence

$$
\begin{aligned}
n^{4}+4 & =16 j^{4}+32 j^{3}+24 j^{2}+8 j+5 \\
& =\left(4 j^{2}+1\right)\left(4 j^{2}+8 j+5\right) .
\end{aligned}
$$

Note that the first factor above satisfies $4 j^{2}+1 \geq 4(1)^{2}+1=5$. The second factor satisfies $4 j^{2}+8 j+5 \geq 4(1)^{2}+8(1)+5=17$. Hence we have factored $n^{4}+4$ into a product $x y$ with $x>1$ and $y>1$. Thus, by exercise $7 \mathrm{~b}, n^{4}+4$ is composite.
11. Let $n>1$ be an integer. If $2^{n}-1$ is a prime, then n is prime. [An integer of the form $2^{p}-1$, where p is prime is called a Mersenne prime.]

Solution: We prove the contrapositive: Let $n>1$. If n is composite, then $2^{n}-1$ is composite.
Suppose that $n>1$ is composite. Then $n=a b$ where $a>1$ and $b>1$ by exercise 7 . Note that

$$
2^{n}-1=2^{a b}-1=\left(2^{a}-1\right)\left(2^{a(b-1)}+2^{a(b-2)}+\cdots+2^{2 a}+2^{a}+1\right)
$$

Note that the first factor from the equation above satisfies $2^{a}-1 \geq$ $2^{2}-1=3$. And the second factor satisfies

$$
2^{a(b-1)}+2^{a(b-2)}+\cdots+2^{2 a}+2^{a}+1 \geq 2^{a}+1 \geq 2^{2}+1=5
$$

Therefore, we have factored $2^{n}-1$ into a product $x y$ where $x>1$ and $y>1$. By exercise 7 , we have that $2^{n}-1$ is composite.
12. Let d and n be integers, both not zero. If $d \mid n$ and $d \mid n+1$, then $d=1$ or $d=-1$.
Solution: Since $d \mid n$ we have that $n=d k$ for some integer k. Since $d \mid(n+1)$ we have that $n+1=d m$ for some integer m. By subtracting these two equations we get

$$
1=(n+1)-n=d m-d k=d(m-k)
$$

Hence $d \mid 1$. Therefore, $d=1$ or $d=-1$.

