
Math 446 - Homework # 1

In the following problems, x, y, z,m, n are integers.

1. Prove that if x|y and y|z, then x|z.

Solution: Since x|y we have that xs = y for some integer s. Since
y|z we have that yt = z for some integer t. Therefore, x(st) = (xs)t =
yt = z. Hence x|z.

2. Prove that if x|y and m|n, then xm|yn.
Solution: Since x|y we have that xs = y for some integer s. Since m|n
we have that mt = n for some integer t. Hence xm(st) = (xs)(mt) =
yn. Therefore xm|yn.

3. Prove that if xy|z, then x|z.
Solution: Since xy|z we have that (xy)k = z for some integer k. Hence
x(yk) = z. Thus, x|z.

4. Prove that xz|yz if and only if x|y.
Solution: Suppose that xz|yz. Then (xz)k = yz for some integer k.
Hence xk = y. Thus x|y.

Now suppose that x|y. Then there exists an integer n with xn = y.
Multiplying by z gives us that (xz)n = yz. Hence xz|yz.

5. Prove that if x|(y + z) and x|y, then x|z.
Solution: Since x|(y + z) there exists an integer s with xs = y + z.
Since x|y there exists an integer t with xt = y. Therefore,

z = xs− y = xs− xt = x(s− t).

Hence x|z.

6. Prove that if x|y and x|z, then x|(my + nz).

Solution: Since x|y we have that xs = y for some integer s. Since x|z
we have that xt = z for some integer t. Therefore

my + nz = m(xs) + n(xt) = x(ms + nt).

Hence x|(my + nz).



7. Let n > 1 be an integer.

(a) n is composite if and only if there exist positive integers a and b
such that n = ab and 1 < a < n and 1 < b < n.

Solution: Let n > 1 be an integer. Suppose that n is composite.
Then since n is not prime, there exists a positive integer a that
divides n where 1 < a < n. By the definition of division, this
means that there exists another positive integer b with n = ab.
Note that b = n/a. Since 1 < a < n we have that 1 > 1/a > 1/n.
Thus n > n/a > 1. That is, 1 < b < n. This gives us that n = ab
where 1 < a < n and 1 < b < n.

Conversely suppose that n = ab where 1 < a < n and 1 < b < n.
Then n has a positive divisor a that is not equal to 1 or n. Hence
n is not prime. That is, n is composite.

(b) n is composite if and only if there exist positive integers a and b
such that n = ab and 1 < a and 1 < b.

Solution: Suppose n is composite. Then from the first part of
this exercise, there exists positive integers a and b with 1 < a < n
and 1 < b < n. So 1 < a and 1 < b.

Suppose now that there exists positive integers a and b with n = ab
and 1 < a and 1 < b. Since 1 < a we have that 1/a < 1. Therefore,
n/a < n. Since b = n/a this gives us that b < n. Therefore, b
is a divisor of n with 1 < b < n. Thus n cannot be prime since
we have a positive divisor that is not equal to 1 or n. So n is
composite.

8. Prove that 4 does not divide n2 + 2 for any integer n.

Solution: We prove this by contradiction. Suppose that 4 divides
n2 + 2 for some integer n. Then there exists an integer m with 4m =
n2 + 2.

Suppose that n is even. Then n = 2k for some integer k. Hence
4m = 4k2 + 2. Thus 2m = 2k2 + 1. This is a contradiction since we
can’t have an even integer equal to an odd integer.

Suppose that n is odd. Then n = 2j + 1 for some integer j. Hence
4m = (2j + 1)2 + 2 = 4j2 + 4j + 3 = 2(2j2 + 2j + 1) + 1. Again we have
an even integer equal to an odd integer, which can’t happen.

Hence there cannot exist an integer n where 4 divides n2 + 2.



9. Prove that any prime of the form 3k + 1 is of the form 6s + 1.

Solution: Let p be a prime of the form 3k + 1 where k is a positive
integer.

Suppose that k is even. Then k = 2s for some integer s. Hence
p = 3k + 1 = 6s + 1, which is what we want to show.

Suppose that k is odd. Then k = 2t + 1 for some integer t. Hence
p = 3k + 1 = 3(2t + 1) + 1 = 6t + 4 = 2(3t + 2) is even. Since p is
prime and p is even, we must have that p = 2 (since 2 is the only even
prime). But then 2 = 2(3t+ 2). This implies that 3t+ 2 = 1. But then
t = −1/3 which isn’t an integer. This contradicts the fact that t is an
integer. Hence this case, where k is odd, cannot occur.

In summary, if p is a prime of the form 3k+ 1 then k must be even and
p is of the form 6s + 1.

10. Show that n4 + 4 is composite for all n > 1.

Solution: Before we begin the proof, note that if n = 1 then n4+4 = 5
which is prime, that is, not composite. This is why we must have n > 1.

We break the proof into two cases.

Suppose that n > 1 is even. Then n = 2k for some integer k ≥ 1.
Hence

n4 + 4 = 16k4 + 4 = 4(4k4 + 1).

Note that 4k4 + 1 ≥ 4(1)4 + 1 = 5. Hence we have factored n4 + 4 into
a product xy with x > 1 and y > 1. Thus, by exercise 7b, n4 + 4 is
composite.

Suppose that n is odd. Then n = 2j + 1 for some integer j ≥ 1. Hence

n4 + 4 = 16j4 + 32j3 + 24j2 + 8j + 5

= (4j2 + 1)(4j2 + 8j + 5).

Note that the first factor above satisfies 4j2 + 1 ≥ 4(1)2 + 1 = 5. The
second factor satisfies 4j2 + 8j + 5 ≥ 4(1)2 + 8(1) + 5 = 17. Hence we
have factored n4 + 4 into a product xy with x > 1 and y > 1. Thus,
by exercise 7b, n4 + 4 is composite.

11. Let n > 1 be an integer. If 2n − 1 is a prime, then n is prime. [An
integer of the form 2p−1, where p is prime is called a Mersenne prime.]



Solution: We prove the contrapositive: Let n > 1. If n is composite,
then 2n − 1 is composite.

Suppose that n > 1 is composite. Then n = ab where a > 1 and b > 1
by exercise 7. Note that

2n − 1 = 2ab − 1 = (2a − 1)(2a(b−1) + 2a(b−2) + · · ·+ 22a + 2a + 1).

Note that the first factor from the equation above satisfies 2a − 1 ≥
22 − 1 = 3. And the second factor satisfies

2a(b−1) + 2a(b−2) + · · ·+ 22a + 2a + 1 ≥ 2a + 1 ≥ 22 + 1 = 5.

Therefore, we have factored 2n − 1 into a product xy where x > 1 and
y > 1. By exercise 7, we have that 2n − 1 is composite.

12. Let d and n be integers, both not zero. If d|n and d|n + 1, then d = 1
or d = −1.

Solution: Since d|n we have that n = dk for some integer k. Since
d|(n+ 1) we have that n+ 1 = dm for some integer m. By subtracting
these two equations we get

1 = (n + 1)− n = dm− dk = d(m− k).

Hence d|1. Therefore, d = 1 or d = −1.


