Math 5680

Homework \# 1

Series

1. Determine whether or not the following series converge. If the series converges, what does it converge to?
(a) $\sum_{n=1}^{\infty} \frac{i^{n}}{2^{n-1}}$
(b) $\sum_{n=3}^{\infty} \frac{e+1}{2^{n} \pi^{n+3}}$
(c) $\sum_{n=0}^{\infty} \frac{10^{n+1}}{2^{n} \sqrt{3}^{n+3}}$
(d) $\sum_{n=1}^{\infty} \frac{(1+i)^{n}}{5+(1+i)^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$
2. Let $n_{0} \geq 1$ be an integer. Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=n_{0}}^{\infty} a_{n}$ converges. Here the a_{n} are complex numbers.
3. Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be two convergent sequences of complex numbers.
(a) If $\sum_{k=1}^{\infty} a_{k}=A$ and $\sum_{k=1}^{\infty} b_{k}=B$, then $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)=A+B$
(b) If $\sum_{k=1}^{\infty} a_{k}=A$ and $\alpha \in \mathbb{C}$, then $\sum_{k=1}^{\infty}\left(\alpha \cdot a_{k}\right)=\alpha A$
4. (Cauchy Criterion for series) Let $\sum_{k=1}^{\infty} a_{k}$ be a series of complex numbers. Prove: $\sum_{k=1}^{\infty} a_{k}$ converges if and only if for every $\epsilon>0$ there is an $N>0$ such that if $n \geq N$ then

$$
\left|\sum_{k=n+1}^{n+p} a_{k}\right|<\epsilon
$$

for all $p=1,2,3,4, \ldots$.
5. (Comparison Test) Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be sequences of positive real numbers. Suppose further that $0<a_{k} \leq b_{k}$ for all k.
(a) Prove: If $\sum b_{k}$ converges then $\sum a_{k}$ converges.
(b) Prove: If $\sum a_{k}$ diverges then $\sum b_{k}$ diverges.
6. Determine whether or not the following series converges. Does it converge absolutely?
(a) $\sum_{n=1}^{\infty} \sin \left(\pi i^{n}\right)$
(b) $\sum_{n=1}^{\infty} \frac{1+(-i)^{n}}{n^{2}}$
(c) $\sum_{n=1}^{\infty} z^{n}$ where $z \in \mathbb{C}$ and $|z|<1$
(d) $\sum_{n=1}^{\infty} z^{n}$ where $z \in \mathbb{C}$ and $|z| \geq 1$
7. Let $\sum_{k=1}^{\infty} a_{k}$ be a series of complex numbers. Prove: If $\sum_{k=1}^{\infty} a_{k}$ converges, then $\lim _{k \rightarrow \infty} a_{k}=0$.
8. (a) Prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
[Note: This proof is a pretty tricky, so don't get frustrated if you can't do it without looking at the solution. It's a classic proof, which is why I put it in here.]
(b) Let p be a real number with $p \leq 1$. Prove that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges.
[Hint: Compare it to the harmonic series.]

