Math 5680 Homework # 1 Series

1. Determine whether or not the following series converge. If the series converges, what does it converge to?

(a)
$$\sum_{n=1}^{\infty} \frac{i^n}{2^{n-1}}$$

(b) $\sum_{n=3}^{\infty} \frac{e+1}{2^n \pi^{n+3}}$
(c) $\sum_{n=0}^{\infty} \frac{10^{n+1}}{2^n \sqrt{3}^{n+3}}$
(d) $\sum_{n=1}^{\infty} \frac{(1+i)^n}{5+(1+i)^n}$
(e) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

- 2. Let $n_0 \ge 1$ be an integer. Show that $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=n_0}^{\infty} a_n$ converges. Here the a_n are complex numbers.
- 3. Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be two convergent sequences of complex numbers.

(a) If
$$\sum_{k=1}^{\infty} a_k = A$$
 and $\sum_{k=1}^{\infty} b_k = B$, then $\sum_{k=1}^{\infty} (a_k + b_k) = A + B$
(b) If $\sum_{k=1}^{\infty} a_k = A$ and $\alpha \in \mathbb{C}$, then $\sum_{k=1}^{\infty} (\alpha \cdot a_k) = \alpha A$

4. (Cauchy Criterion for series) Let $\sum_{k=1}^{\infty} a_k$ be a series of complex numbers. Prove: $\sum_{k=1}^{\infty} a_k$ converges if and only if for every $\epsilon > 0$ there is an N > 0 such that if $n \ge N$ then

$$\left|\sum_{k=n+1}^{n+p} a_k\right| < \epsilon$$

for all $p = 1, 2, 3, 4, \ldots$

- 5. (Comparison Test) Let $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ be sequences of positive real numbers. Suppose further that $0 < a_k \leq b_k$ for all k.
 - (a) Prove: If $\sum b_k$ converges then $\sum a_k$ converges.
 - (b) Prove: If $\sum a_k$ diverges then $\sum b_k$ diverges.
- 6. Determine whether or not the following series converges. Does it converge absolutely?

(a)
$$\sum_{n=1}^{\infty} \sin(\pi i^n)$$

(b)
$$\sum_{n=1}^{\infty} \frac{1 + (-i)^n}{n^2}$$

(c)
$$\sum_{n=1}^{\infty} z^n \text{ where } z \in \mathbb{C} \text{ and } |z| < 1$$

(d)
$$\sum_{n=1}^{\infty} z^n \text{ where } z \in \mathbb{C} \text{ and } |z| \ge 1$$

- 7. Let $\sum_{k=1}^{\infty} a_k$ be a series of complex numbers. Prove: If $\sum_{k=1}^{\infty} a_k$ converges, then $\lim_{k \to \infty} a_k = 0$.
- 8. (a) Prove that the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. [Note: This proof is a pretty tricky, so don't get frustrated if you

can't do it without looking at the solution. It's a classic proof, which is why I put it in here.]

(b) Let p be a real number with $p \le 1$. Prove that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.

[Hint: Compare it to the harmonic series.]