Math 446 - Homework \# 1

In the following problems, x, y, z, m, n are integers.

1. Prove that if $x \mid y$ and $y \mid z$, then $x \mid z$.
2. Prove that if $x \mid y$ and $m \mid n$, then $x m \mid y n$.
3. Prove that if $x y \mid z$, then $x \mid z$.
4. Prove that $x z \mid y z$ if and only if $x \mid y$.
5. Prove that if $x \mid(y+z)$ and $x \mid y$, then $x \mid z$.
6. Prove that if $x \mid y$ and $x \mid z$, then $x \mid(m y+n z)$.
7. Let $n>1$ be an integer.
(a) n is composite if and only if there exist positive integers a and b such that $n=a b$ and $1<a<n$ and $1<b<n$.
(b) n is composite if and only if there exist positive integers a and b such that $n=a b$ and $1<a$ and $1<b$.
8. Prove that 4 does not divide $n^{2}+2$ for any integer n.
9. Prove that any prime of the form $3 k+1$ is of the form $6 s+1$.
10. Show that $n^{4}+4$ is composite for all $n>1$.
11. Let $n>1$ be an integer. If $2^{n}-1$ is a prime, then n is prime. [An integer of the form $2^{p}-1$, where p is prime is called a Mersenne prime.]
12. If $d \mid n$ and $d \mid n+1$, then $d=1$ or $d=-1$.
