Math 4570 - Homework \# 1

Vector spaces and subspaces

1. Are the following vector spaces? Prove or disprove.
(a) Let

$$
V=C(\mathbb{R})=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid \mathrm{f} \text { is continuous on all of } \mathbb{R}\}
$$

and $F=\mathbb{R}$. For example, $f_{1}(x)=x^{2}$ and $f_{2}(x)=\sin (x)$ are in V. Vector addition is the usual function addition defined as $(f+g)(x)=f(x)+g(x)$ and scalar multiplication is the usual defined as $(\alpha f)(x)=\alpha \cdot f(x)$
(b) $V=\mathbb{R}^{2}$ and $F=\mathbb{R}$ where vector addition is defined as $(x, y)+$ $(a, b)=(x+a, y+b)$ and scalar multiplication is defined as $\alpha \odot(x, y)=(2 \alpha x, 2 \alpha y)$.
[Here I changed the notation for the scalar multiplication to \odot since it is different from the usual scalar multiplication.]
(c) V is the set of positive real numbers, that is $V=\{x \in \mathbb{R} \mid x>0\}$ and $F=\mathbb{R}$ where vector addition is defined as $x \oplus y=x y$ and scalar multiplication is defined as $\alpha \odot x=x^{\alpha}$.
[Here I changed the notation to \oplus and \odot to reflect that we are defining a new plus and scalar multiplication that is different from the usual one.]
2. Are the following sets W subspaces of the vector spaces V ? Prove or disprove.
(a) $V=\mathbb{R}^{3}, F=\mathbb{R}, W=\{(a, b, c) \mid a=3 b$ and $c=-b\}$
(b) $V=\mathbb{C}^{3}, F=\mathbb{C}, W=\{(a, b, c) \mid a=c+2\}$
(c) $V=M_{2,2}(\mathbb{R}), F=\mathbb{R}, W=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a+b+c+d=0\right\}$
(d) $V=M_{2,2}(\mathbb{R}), F=\mathbb{R}, W=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a d-b c=0\right\}$
(e) $V=P_{3}(\mathbb{R}), F=\mathbb{R}, W=\left\{a+b x+c x^{2}+d x^{3} \mid a=0\right\}$
(f) $V=P_{3}(\mathbb{C}), F=\mathbb{C}, W=\{a+b x \mid a+b=i\}$
3. Let F be a field. Prove the following.
(a) Let 0_{1} and 0_{2} be in F where $0_{1}+a=a+0_{1}=a$ and $0_{2}+a=$ $a+0_{2}=a$ for all $a \in F$. Show that $0_{1}=0_{2}$.
(b) Let 1_{1} and 1_{2} be in F where $1_{1} \cdot a=a \cdot 1_{1}=a$ and $1_{2} \cdot a=a \cdot 1_{2}=a$ for all $a \in F$. Show that $1_{1}=1_{2}$.
(c) Let $a \in F$ and $d_{1}, d_{2} \in F$. If $a+d_{1}=d_{1}+a=0$ and $a+d_{2}=$ $d_{2}+a=0$, then $d_{1}=d_{2}$.
(d) Let $b \in F$ with $b \neq 0$ and $f_{1}, f_{2} \in F$. If $b \cdot f_{1}=f_{1} \cdot b=1$ and $b \cdot f_{2}=f_{2} \cdot b=1$, then $f_{1}=f_{2}$.
4. Let V be a vector space over a field F. Prove the following.
(a) For each $x \in V$ we have that $0 x=\mathbf{0}$. Here 0 is the additive identity of F and $\mathbf{0}$ is the additive identity of V.
(b) For each $a \in F$ and $x \in V$ we have that $(-a) x=-(a x)=a(-x)$.
(c) For each $a \in F$ we have that $a \mathbf{0}=\mathbf{0}$ where $\mathbf{0}$ is the additive identity of V.
5. Let V be a vector space of a field F. Let W be a subset of V. Then W is a subspace of V if and only if the following three conditions hold.
(a) $\mathbf{0} \in W$
(b) If $x, y \in W$ then $x+y \in W$.
(c) If $c \in F$ and $x \in W$ then $c x \in W$.
6. Let V be a vector space over a field F. Let W_{1} and W_{2} be subspaces of V. Prove that $W_{1} \cap W_{2}$ is a subspace of V.
7. Let V be a vector space over a field F. Let W_{1} and W_{2} be subspaces of V. Define the sum of W_{1} and W_{2} to be the set

$$
W_{1}+W_{2}=\left\{x+y \mid x \in W_{1} \text { and } y \in W_{2}\right\}
$$

(a) Prove that $W_{1} \subset W_{1}+W_{2}$ and $W_{2} \subset W_{1}+W_{2}$.
(b) Prove that $W_{1}+W_{2}$ is a subspace of V.
(c) Prove that if W is subspace of V that contains both W_{1} and W_{2} then W also contains $W_{1}+W_{2}$.

