Math 2550
 HW 1 - Part 2
 Vectors

1. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{2}$ and $\alpha, \beta \in \mathbb{R}$.

Let $\overrightarrow{0}$ be the zero vector in \mathbb{R}^{2}.
(a) Prove that $\vec{u}+\overrightarrow{0}=\vec{u}$
(b) Prove that $(\alpha+\beta) \vec{v}=\alpha \vec{v}+\beta \vec{v}$
(c) Prove that $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
(d) Prove that $\alpha(\vec{u} \cdot \vec{v})=(\alpha \vec{u}) \cdot \vec{v}$
2. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{3}$ and $\alpha, \beta \in \mathbb{R}$.

Let $\overrightarrow{0}$ be the zero vector in \mathbb{R}^{3}.
(a) Prove that $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
(b) Prove that $(\alpha+\beta) \vec{v}=\alpha \vec{v}+\beta \vec{v}$
(c) Prove that $\alpha(\beta \vec{v})=(\alpha \beta) \vec{v}$
(d) Prove that $\overrightarrow{0} \cdot \vec{u}=0$
(e) Prove that $\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}$

