Math 2550 HW 1 - Part 2 Vectors

- 1. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^2$ and $\alpha, \beta \in \mathbb{R}$. Let $\vec{0}$ be the zero vector in \mathbb{R}^2 .
 - (a) Prove that $\vec{u} + \vec{0} = \vec{u}$
 - (b) Prove that $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$
 - (c) Prove that $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
 - (d) Prove that $\alpha(\vec{u} \cdot \vec{v}) = (\alpha \vec{u}) \cdot \vec{v}$
- 2. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ and $\alpha, \beta \in \mathbb{R}$. Let $\vec{0}$ be the zero vector in \mathbb{R}^3 .
 - (a) Prove that $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
 - (b) Prove that $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$
 - (c) Prove that $\alpha(\beta \vec{v}) = (\alpha \beta) \vec{v}$
 - (d) Prove that $\vec{0} \cdot \vec{u} = 0$
 - (e) Prove that $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$