Math 4300 - Homework # 1 Abstract and Incidence Geometries

- 1. In the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$, find the line through P and Q and draw a picture where
 - (a) P = (-1, 2) and Q = (3, 2)
 - (b) $P = (-4, -\sqrt{2})$ and Q = (-4, 2)
 - (c) P = (2, 1) and Q = (4, 3)
- 2. In the Hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$, find the line through P and Q and draw a picture where
 - (a) P = (1, 2) and Q = (3, 4)
 - (b) $P = (\pi, \sqrt{2})$ and $Q = (\pi, 2)$
 - (c) P = (2, 1) and Q = (4, 3)
- 3. In the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$, determine if the points are collinear or non-collinear.
 - (a) P = (3, 2), Q = (3, 1), R = (1, -1)
 - (b) P = (2, 1), Q = (4, 3), R = (6, 5)
 - (c) P = (0, 1), Q = (0, 3), R = (0, -5), S = (0, 10)
- 4. In the Hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$ determine if the points are collinear or non-collinear.
 - (a) A = (-2, 2), B = (-2, 4), and C = (-2, 300)
 - (b) P = (0, 1), Q = (1, 2), and R = (4, 1)
 - (c) A = (1, 1), B = (3, 1), and C = (2, 3)
- 5. In the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$, determine if the lines are parallel or not.

- (a) L_1 and L_1
- (b) L_{-3} and L_1
- (c) L_{-3} and $L_{1,1}$
- (d) $L_{-1,2}$ and $L_{1,1}$
- (e) $L_{3,2}$ and $L_{3,-1}$
- 6. In the Hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$ determine if the lines are parallel or not.
 - (a) $_0L_1$ and $_5L_2$
 - (b) $_0L_1$ and $_2L_2$
 - (c) $_{0}L_{10}$ and $_{5}L_{2}$
 - (d) $_{0}L_{10}$ and $_{0}L_{10}$
 - (e) $_1L_{10}$ and $_{-5}L$
 - (f) $_1L_1$ and $_2L_2$
- 7. Let $(\mathscr{P}, \mathscr{L})$ be an incidence geometry. Suppose that P, Q, R are distinct points from \mathscr{P} and that they are collinear. Prove that there is a unique line from \mathscr{L} that passes through all three points.
- 8. Let $(\mathscr{P}, \mathscr{L})$ be an incidence geometry. Let ℓ be a line. Prove that there must exist a point P such that P does not lie on ℓ .
- 9. Let $(\mathcal{P}, \mathcal{L})$ be an incidence geometry. Let P be any point. Prove that there exists at least one line ℓ such that P does not lie on ℓ .
- 10. Let $(\mathscr{P}, \mathscr{L})$ be an incidence geometry. Let P be any point. Prove that there exist points Q and R such that P, Q, and R are non-collinear.
- 11. (a) In the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$, find all the lines through the point P = (0, 1) that are parallel to the line L_6 .

- (b) Consider the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E)$. Let ℓ be a line in \mathscr{L}_E and P be a point in \mathbb{R}^2 that does not lie on ℓ . Prove that there exists a unique line m such that P lies on m and m is parallel to ℓ
- 12. (a) In the Hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$, find an infinite number of lines through the point (0, 1) that are parallel to the line $_6L$.
 - (b) Conclude that the statement about parallel lines given in problem 11(b) above is not true in the hyperbolic plane \mathscr{H} .
- 13. Consider the hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ where $x_1 \neq x_2$. Prove that P and Q both lie on ${}_cL_r$ where

$$c = \frac{y_2^2 - y_1^2 + x_2^2 - x_1^2}{2(x_2 - x_1)}$$
 and $r = \sqrt{(x_1 - c)^2 + y_1^2}$

14. Prove that the hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H)$ is an incidence geometry.