Math 465 - Homework \# 1 Supremum / Infimum and Absolute value

1. For each of the following subsets of \mathbb{R} find the supremum and infimum if they exist.
(a) $X=\{5+1 / n \mid n \in \mathbb{N}\}$
(b) $X=\left\{\left.1+\frac{(-1)^{n}}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(c) $X=\left\{\left.\frac{1}{1+x^{2}} \right\rvert\, x \in \mathbb{R}\right\}$
(d) $X=\left\{\left.\frac{x}{1+x} \right\rvert\, x \in \mathbb{R}\right.$ with $\left.x>-1\right\}$
(e) $X=\left\{x \in \mathbb{R} \mid x^{2}+x<3\right\}$
(f) $X=\left\{x \in \mathbb{R} \mid x^{3}<1\right\}$
(g) $X=\{.3, .33, .333, .3333, .33333, \ldots\}$
2. Let $x \geq 0$ be a real number. Suppose that for each $\epsilon>0$ we have that $x \leq \epsilon$. Prove that $x=0$.
3. Suppose that S is a non-empty subset of the real numbers. Suppose that the supremum of S exists. Prove that it is unique. (A similar proof will work to show that infimums are unique.)
4. Let S be a non-empty subset of the real numbers. Suppose that b is an upper bound for S and $b \in S$. Prove that b is the supremum of S.
5. Let A and B be non-empty subsets of \mathbb{R}. Suppose that the supremum of A and supremum of B exist. Are the following true or false? If true, prove it. If false, give a counterexample.
(a) If $A \cap B$ is non-empty then $\sup (A \cap B) \leq \min \{\sup (A), \sup (B)\}$
(b) If $A \cap B$ is non-empty then $\sup (A \cap B)=\min \{\sup (A), \sup (B)\}$
(c) $\sup (A \cup B)=\max \{\sup (A), \sup (B)\}$
6. Suppose that A and B are non-empty bounded subsets of \mathbb{R}. Further suppose that $A \subseteq B$.
(a) Prove that $\sup (A) \leq \sup (B)$ and $\inf (A) \geq \inf (B)$.
(b) If $\sup (A)=\sup (B)$ and $\inf (A)=\inf (B)$ must it be that $A=B$? If so, prove it. If not, give a counterexample.
7. Let a, b, x, and y be real numbers. Prove:
(a) If $a<x<b$ and $a<y<b$, then $|x-y|<b-a$.
(b) $|a-b|=|b-a|$
(c) $|a b|=|a||b|$
(d) $||a|-|b|| \leq|a-b|$
