Math 465 - Homework # 1 Supremum / Infimum and Absolute value

- 1. For each of the following subsets of \mathbb{R} find the supremum and infimum if they exist.
 - (a) $X = \{5 + 1/n \mid n \in \mathbb{N}\}$
 - (b) $X = \{1 + \frac{(-1)^n}{n} \mid n \in \mathbb{N}\}$ (c) $X = \{\frac{1}{1+r^2} \mid x \in \mathbb{R}\}$
 - (d) $X = \{ \frac{x}{1+x} \mid x \in \mathbb{R} \text{ with } x > -1 \}$
 - (e) $X = \{x \in \mathbb{R} \mid x^2 + x < 3\}$
 - (f) $X = \{x \in \mathbb{R} \mid x^3 < 1\}$
 - (g) $X = \{.3, .33, .333, .3333, .33333, \ldots\}$
- 2. Let $x \ge 0$ be a real number. Suppose that for each $\epsilon > 0$ we have that $x \le \epsilon$. Prove that x = 0.
- 3. Suppose that S is a non-empty subset of the real numbers. Suppose that the supremum of S exists. Prove that it is unique. (A similar proof will work to show that infimums are unique.)
- 4. Let S be a non-empty subset of the real numbers. Suppose that b is an upper bound for S and $b \in S$. Prove that b is the supremum of S.
- 5. Let A and B be non-empty subsets of \mathbb{R} . Suppose that the supremum of A and supremum of B exist. Are the following true or false? If true, prove it. If false, give a counterexample.
 - (a) If $A \cap B$ is non-empty then $\sup(A \cap B) \le \min\{\sup(A), \sup(B)\}\$
 - (b) If $A \cap B$ is non-empty then $\sup(A \cap B) = \min\{\sup(A), \sup(B)\}\$
 - (c) $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$
- 6. Suppose that A and B are non-empty bounded subsets of \mathbb{R} . Further suppose that $A \subseteq B$.
 - (a) Prove that $\sup(A) \leq \sup(B)$ and $\inf(A) \geq \inf(B)$.

- (b) If $\sup(A) = \sup(B)$ and $\inf(A) = \inf(B)$ must it be that A = B? If so, prove it. If not, give a counterexample.
- 7. Let a, b, x, and y be real numbers. Prove:
 - (a) If a < x < b and a < y < b, then |x y| < b a.
 - (b) |a b| = |b a|
 - (c) |ab| = |a| |b|
 - (d) $||a| |b|| \le |a b|$