Math 456
 Homework \# 1 - Rings and Fields

1. Are the following sets R rings with the given operations? Show why. For each R that is a ring, also answer the following questions: (a) Is R commutative? (b) Does R have a multiplicative identity? (c) If R has a multiplicative identity, find all of the units of R. (d) Is R a field?
(a) $R=\mathbb{Z}^{+}=\{1,2,3,4, \ldots\}$ with the usual + and .
(b) The Gaussian integers $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ with the usual + and.
(c) The imaginary axis $R=\{i x \mid x \in \mathbb{R}\}$ with the usual + and \cdot
(d) The quadratic number field $R=\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ with the usual + and .
2. Which of the following are subrings of $M_{2}(\mathbb{R})$?
(a) $R_{1}=\left\{\left.\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}\right\}$
(b) $R_{2}=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right.$ and $\left.a d-b c=1\right\}$
3. Find the units in the following rings.
(a) $\mathbb{Z} \times \mathbb{Z}$
(b) $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$
(c) $R=\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$
4. Let R be a ring with multiplicative identity. Prove that the multiplicative identity is unique.
5. Let R be a ring with multiplicative identity. Let x be a unit in R. Prove that there is a unique multiplicative inverse for x.
6. Let R be a ring and a be a fixed element of R. Let

$$
I_{a}=\{x \in R \mid a x=0\} .
$$

Prove that I_{a} is a subring of R.
7. Let $n \in \mathbb{Z}$ with $n \geq 0$. Prove that

$$
n \mathbb{Z}=\{n x \mid x \in \mathbb{Z}\}
$$

is a subring of \mathbb{Z}.
8. Let R be a commutative ring with identity $1 \neq 0$. Let R^{\times}be the set of units of R. Prove that R^{\times}is a group under multiplication.
9. Let R and S be subrings of a ring T. Prove that $R \cap S$ is a subring of T.

