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Abstract

We classify compositions avoiding a single permutation pattern of type (2, 1) according to Wilf-
equivalence and give the generating function for each of the Wilf classes.
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1. Introduction

Pattern avoidance was first studied for Sn, the set of permutations of [n] = {1, 2, . . . , n}, avoiding a
pattern τ ∈ S3. Knuth [6] found that for any τ ∈ S3, the number of permutations of [n] avoiding τ is
given by the nth Catalan number. Later, Simion and Schmidt [10] determined |Sn(T )|, the number of
permutations of [n] simultaneously avoiding any given set of patterns T ⊆ S3. Burstein [1] extended
this to words of length n on the alphabet [k] = {1, . . . , k}, determining the number of words that avoid
a set of patterns T ⊆ S3. Burstein and Mansour [2] extended to forbidden patterns with repeated
letters.

Recently, pattern avoidance has been studied for compositions. Heubach and Mansour [3] counted
the number of times a subword pattern τ of length 2 occurs in compositions, and determined the
number of compositions avoiding such a pattern. They also investigated 3-letter subword patterns [5],
and Mansour and Sirhan [7] considered specific ℓ-letter subword patterns in compositions. Savage
and Wilf [8] considered (classical) pattern avoidance in compositions for a single pattern τ ∈ S3, and
showed that the number of compositions of n with parts in N avoiding τ ∈ S3 is independent of τ .
Savage and Wilf posed some open questions, one of which asked about (classical) pattern avoidance
in compositions for patterns with repeated letters. Heubach and Mansour [4] answered this question
for all such patterns of length 3, and determined the Wilf classes for avoidance of pairs of (classical)
multi-patterns of length 3 in compositions. They gave generating functions for all but one class, and
also considered some patterns of arbitrary length.
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In this paper we focus on generalized patterns of length 3, those that have some adjacency require-
ments. (Classical patterns have no adjacency requirements, while subword patterns require all parts
to be adjacent.) The only patterns of length 3 that have partial adjacency requirements are those
that require two letters to be adjacent. We will give a complete characterization of these patterns in
terms of their Wilf-equivalence and derive the generating functions for each of the different classes.
We start by defining our notation in Section 2. Sections 3 and 4 contain the main results: first the
classification into Wilf-equivalence classes, then the corresponding generating functions for each class.

2. Preliminaries

Let N be the set of all positive integers, and let A be any ordered finite (or infinite) set of positive
integers, say A = {a1, a2, . . . , ad}, where a1 < a2 < a3 < · · · < ad. For ease of notation, “ordered set”
will always refer to a set whose elements are listed in increasing order. We use the notation Aj to
denote the subset of the first j elements of A, i.e., Aj = {a1, . . . , aj} and A = Ad.

A composition σ = σ1σ2 . . . σm of n ∈ N is an ordered collection of one or more positive integers
whose sum is n. The number of summands or letters, namely m, is called the number of parts of the
composition. For any ordered set A = {a1, a2, . . . , ak} ⊆ N, we denote the set of all compositions of n

with parts in A (with m parts in A) by CA
n (CA

n;m). We say that the composition σ ∈ CA
n;m contains a

permutation pattern τ = ab-c of type (1, 2) if there exist i, j such that 2 ≤ i+1 < j ≤ m and σiσi+1σj

is a subsequence isomorphic to abc, where abc ∈ S3. Otherwise, we say that σ avoids τ and write
σ ∈ ACA

n (τ) (ACA
n;m(τ)). Since all patterns in this paper are permutation patterns of type (2, 1), we

will refer to them just as patterns.

For a given a pattern τ and an ordered finite or infinite set A of positive integers, we define |ACA
n;0(τ)| =

1 for all n ≥ 0 and |ACA
n;m(τ)| = 0 for n < 0 or m < 0. We define the generating function for the

number of τ -avoiding compositions of n with m parts in A as

ACτ
A(x, y) =

∑

n,m≥0

|ACA
n;m(τ)|xnym,

and denote the corresponding generating function for those compositions that start with σ1σ2 . . . σk

by ACτ
A(σ1σ2 . . . σk|x, y). Finally, we say that two patterns τ and τ ′ belong to the same cardinality or

Wilf class, or are Wilf-equivalent, if for all values of A, m and n, we have |ACA
n;m(τ)| = |ACA

n;m(τ ′)|.
In this case, we write τ ∼ τ ′.

3. Wilf-equivalence for type (2, 1) permutation patterns

We first determine the Wilf-equivalence classes for permutation patterns of type (2, 1). There are six
such patterns, namely 12-3, 13-2, 21-3, 23-1, 31-2 and 32-1. These patterns fall into three separate
equivalence classes. Not surprisingly, the classes split according to the last part of the pattern. One
might expect that a simply reversing those parts of the compositions that correspond to the adjacent
pair would do the trick of showing Wilf-equivalence. This is indeed the case for two of the equivalence
classes, but does not work for showing that 13-2 ∼ 31-2. We will start with the easy case.

Theorem 3.1. For any ordered set A = {a1, a2, . . .} ⊆ N, 12-3 ∼ 21-3 and 23-1 ∼ 32-1.
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Proof. We give a bijection φ between the set of compositions of n with m parts in A avoiding the
respective patterns. Let σ ∈ ACA

n;m(12-3) and assume that σ has maximal part aj which occurs s

times. Thus, σ can be decomposed as

σ(1)ajσ
(2)aj · · · ajσ

(s)ajσ
′,

where each σ(i) is a non-increasing composition with parts in Aj−1 and σ′ is a composition with parts
in Aj−1 that avoids 12-3. We define φ(σ) recursively as

R(σ(1))ajR(σ(2))aj · · · ajR(σ(s))ajφ(σ′),

where R is the reversal map defined by R :σ1σ2 · · ·σm 7→ σm · · ·σ2σ1. Clearly, σ avoids 12-3 if and only
if φ(σ) avoids 21-3 and σ and φ(σ) are both compositions of n with m parts in A. Thus, 12-3 ∼ 21-3;
the proof for 23-1 ∼ 32-1 follows with appropriate adjustments. �

Now we deal with the harder equivalence.

Theorem 3.2. For any ordered set A = {a1, a2, . . .} ⊆ N, 13-2 ∼ 31-2.

Proof. We define an algorithm that transforms σ ∈ ACA
n;m(13-2) into σ′ ∈ ACA

n;m(31-2) and vice versa,

thereby giving a bijection between ACA
n;m(13-2) and ACA

n;m(31-2). The basic idea is to move blocks of
“1”s from one side of the (single) “3” to the other, leaving the corresponding (single)“2” in place. This
process transforms a 13-2 pattern into a 31-2 pattern and vice versa. We make this idea precise with
the following definitions: An ascent in σ is an integer σi such that σi < σi+1. The ascent σi is called
active if there is an integer σj such that i + 1 < j and σi < σj < σi+1, i.e., an active ascent is the “1”
in an occurrence of the pattern 13-2 of width j − i+1. Note that an active ascent can be part of more
than one occurrence of 13-2 and σ ∈ ACA

n;m(13-2) cannot have an active ascent. For each occurrence
of a pattern 13-2 we define the associated ascent block to be the maximal substring σkσk+1 · · ·σi such
that σℓ < σj for ℓ = k, . . . , i. Similarly, a descent in a composition σ is an integer σi, i > 1, such that
σi−1 > σi. The descent σi is called active if there is an integer σj such that i < j and σi < σj < σi−1,
i.e., an active descent is the “1” in an occurrence of the pattern 31-2 of width j − i. As before, an
active descent can belong to more than one occurrence of 31-2, and σ ∈ ACA

n;m(31-2) cannot have an
active descent. For each occurrence of a pattern 31-2 we define the associated descent block to be the
maximal substring σiσi+1 · · ·σk such that σℓ < σj for ℓ = i, . . . , k. Both the ascent and the descent
block consist of all “1”s. For a fixed ascent/descent block, the innermost pattern is the associated one
of smallest width, while the outermost pattern is the associated pattern of largest width.

We now describe the map ρ:ACA
n;m(13-2) 7→ ACA

n;m(31-2). Let σ = σ1 · · ·σm ∈ ACA
n;m(13-2) have

r occurrences of the pattern 13-2. Let σ(0) = σ and σ(j) be the composition that results after j

steps of the algorithm. Basically, each step transforms one of the active descents and removes at
least one of its associated occurrences of the pattern 31-2, so that after at most r steps we obtain a
composition ρ(σ) ∈ ACA

n;m(31-2). Note that if r = 0, then σ ∈ ACA
n;m(31-2) and ρ(σ) = σ(0) = σ.

Now assume that r > 0. Then σ(j) is obtained from σ(j−1) as follows: Let σdj
be the leftmost active

descent in σ(j−1), and for i = 1, . . . , m, let σi denote the ith part in σ(j−1). For the active descent
σdj

identify the associated innermost 31-2 pattern. Assume that it occurs at σdj−1σdj
σj∗. Since it

has the smallest width, the descent block consists of σdj
· · ·σj∗−1. Furthermore, since σ avoids 13-2,

we have that σℓ ≤ σj∗−1 ≤ σdj
or σℓ ≥ σj∗ for ℓ > j∗. Now we cut out the descent block and move

it to the left of σdj
, inserting it immediately after the rightmost part σi∗ with σi∗ ≤ σj∗, or at the

beginning of σ(j−1) if such a σi∗ does not exist. This insertion may create a descent if σi∗ > σdj
, but
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the newly created descent cannot be active due to the definition of i∗ and the consequences of the 13-2
avoidance. We have therefore reduced the number of 31-2 patterns by at least one. Let the resulting
composition be σ(j). Note that the movement of the descent block for the innermost pattern modifies
other occurrences of 31-2 patterns associated with the active descent. Sometimes several patterns
are removed at once; if not, then the part that previously played the role of the “2” for one of the
associated patterns is now playing the role of the “1”, and thus may become a new active descent.
However, it occurs to the right of the previous active descent, and the set of values which can play the
role of “2” for this potential active descent has decreased. Therefore, after at most r applications of
the algorithm, all occurrences of 31-2 have been removed from σ, and the resulting composition ρ(σ)

is in ACA
n;m(31-2). In addition, ρ(σ) has at least one active ascent (created from the active descent in

the last step). The resulting composition ρ(σ) is unique, and if σ 6= σ̃, then ρ(σ) 6= ρ(σ̃). This gives

|ACA
n;m(13-2)| ≥ |ACA

n;m(31-2)|.

To compute the image ρ′(σ) of σ ∈ ACA
n;m(31-2), modify the algorithm for ρ accordingly: in the jth

step identify the rightmost active ascent and its associated outermost 13-2 pattern. Assume that
this 13-2 pattern occurs at σdj

σdj+1σj∗. Insert its ascent block immediately before σj∗. Again, the

resulting composition ρ′(σ) is unique, and if σ 6= σ̃, then ρ′(σ) 6= ρ′(σ̃). This gives |ACA
n;m(31-2)| ≥

|ACA
n;m(13-2)|, and therefore, the two sets have the same number of compositions. �

We give a few examples to illustrate the two algorithms. Note that in each case, ρ′(ρ(σ)) = σ,
even though the intermediate compositions are not necessarily the same. In addition, the number of
patterns associated with active descents/ascents do not have to be the same in the composition and
its image, and not even the number of active ascents and descent have to be the same.

Example 3.3. Let σ = 59424511241 ∈ AC
[9]
38;11(13-2). Note that σ has two active descents with

associated 31-2 patterns 945, 512, and 514. It is transformed as follows:

59424511241 → 54249511241 → 54211495241 → 54211429541 ∈ AC
[9]
38;11(31-2),

corresponding to the movements of descent blocks (424) inserted after 5, (11) inserted after 2, and

(2) inserted after 4. On the other hand, starting with σ = 54211429541 ∈ AC
[9]
38;11(31-2) (having two

active ascents with associated 13-2 patterns 142, 295, and 294) we obtain

54211429541 → 54211495241 → 59421142541 → 59424511241 ∈ AC38;11[9](13-2),

corresponding to the movements of ascent blocks (2) inserted before 4, (42114) inserted before 5, and
(11) inserted before 4.

As a second example, we consider σ = 9445421126718 ∈ AC
[9]
54;13(13-2) with one active descent and

associated 31-2 patterns 945, 946, 947, 948. This composition is transformed as follows:

9445421126718 → 4495421126718 → 4454211296718→ 4454211269718 → 4454211267198,

corresponding to movement of the blocks (44) inserted before 9, (542112) inserted after 4, (6) inserted

after 2, and (71) inserted after 6. The resulting composition 4454211267198 ∈ AC
[9]
54;13(31-2) has one

active ascent, but only a single associated 13-2 pattern, namely 198. The reverse map therefore has
only one intermediate step, where the block (44542112671) is inserted before the 8:

4454211267198 → 9445421126718 ∈ AC
[9]
54;13(13-2).
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Finally, we give an example where the image has fewer active ascents. Let σ = 6244582418191 ∈

AC
[9]
55;13(13-2), which has two active descents with associated 31-2 patterns 624, 624, 625, and 824.

The image is created as follows:

6244582418191 → 2644582418191 → 2446582418191 → 2442658418191∈ AC
[9]
55;13(31-2),

corresponding to the movements of descent blocks (2) inserted before 6, (44) inserted after 2, and (2)
inserted after 4. The resulting composition has only one active ascent with two associated patterns
265 and 264. The reverse map is given by

2442658418191→ 2446582418191 → 6244582418191 ∈ AC
[9]
55;13(13-2),

corresponding to the movements of ascent blocks (2) inserted before 4 and (244) inserted before 5.

So altogether we have that 12-3 ∼ 21-3, 23-1 ∼ 32-1 and 13-2 ∼ 31-2. In fact these are all the Wilf
classes for patterns of type (2, 1), since the sequences for the number of compositions of n that avoid
the respective patterns are different (see Examples 4.2, 4.4 and 4.6).

4. Generating functions for type (2, 1) permutation patterns

We now derive the generating functions for the set A = [d].

Theorem 4.1. The generating function for the number of compositions of n with m parts in [d] that
avoid 12-3 is given by

AC12-3
[d] (x, y) =

d
∏

i=1

(

1 −
xiy

∏i−1
j=1(1 − xjy)

)−1

.

Proof. Separating how the composition begins we obtain

AC12-3
[d] (i|x, y) = xiy +

∑i

j=1 AC12-3
[d] (ij|x, y) +

∑d

j=i+1 AC12-3
[d] (ij|x, y)

= xiy + xiy
(

∑i

j=1 AC12-3
[d] (j|x, y)

+
∑d

j=i+1 xjyAC12-3
[j] (x, y)

)

.

Note that in the last sum, the set of parts for the composition is restricted from [d] to [j] to guarantee
avoidance of 12-3. From this recursion, we get that the generating function

Gd(i) = AC12-3
[d] (i|x, y) − AC12-3

[d−1](i|x, y)

satisfies

Gd(i) = xiy

i
∑

j=1

Gd(j) + xiy · xdyAC12-3
[d] (x, y),

and solving for Gd(i) leads to

Gd(i) =
xiy

1 − xiy





i−1
∑

j=1

Gd(j) + xdyAC12-3
[d] (x, y)



 .

It is not hard to prove by induction on i that

Gd(i) =
xi+dy2AC12-3

[d] (x, y)
∏i

j=1(1 − xjy)
,
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for all i = 1, 2, . . . , d − 1. The induction step uses that

(4.1) 1 +

d−1
∑

i=1

xiy
∏i

j=1(1 − xjy)
=

1
∏d−1

j=1 (1 − xjy)
,

which is also easily proved by induction. Also, for i = d, we obtain from the definition that

Gd(d) = AC12-3
[d] (d|x, y) − AC12-3

[d−1](d|x, y)

= xdyAC12-3
[d] (x, y) − 0 = xdyAC12-3

[d] (x, y).

Therefore, summing over all possible values i = 1, 2, . . . , d we obtain

AC12-3
[d] (x, y) − AC12-3

[d−1](x, y) = xdy

(

1 +

d−1
∑

i=1

xiy
∏i

j=1(1 − xjy)

)

AC12-3
[d] (x, y),

which by (4.1) is equivalent to

AC12-3
[d] (x, y) − AC12-3

[d−1](x, y) =
xdy

∏d−1
j=1 (1 − xjy)

AC12-3
[d] (x, y).

Hence, for all d ≥ 1 we have

AC12−3
[d] (x, y) =

(

1 −
xdy

∏d−1
j=1 (1 − xjy)

)−1

AC12−3
[d−1](x, y).

Iterating the above recurrence relation d times together with the initial condition AC12−3
∅ (x, y) = 1

we get the desired result. �

Example 4.2. Now we can easily obtain the generating function for the number of compositions of
n that avoid the pattern 12-3 as

AC12−3
N

(x, 1) =
∏

i≥1

(

1 −
xi

∏i−1
j=1(1 − xj)

)−1

.

The corresponding sequence for the number of compositions of n that avoid 12-3 for n = 0 to n = 20
is given by 1, 1, 2, 4, 8, 16, 31, 60, 114, 215, 402, 7464, 1375, 2520, 4593, 8329, 15036, 27027, 48389,
86314 and 153432.

Theorem 4.3. The generating function for the number of compositions of n with m parts in [d] that
avoid 23-1 is given by

AC23−1
[d] (x, y) =

d
∏

i=1

(

1 −
xiy

∏d

j=i+1(1 − xjy)

)−1

.

Proof. Let [i, j] = {i, i + 1, . . . , j} and let σ be any composition of n with m parts in [d] that avoids
23-1. Then σ either does not contain the part 1, or σ can be decomposed as

σ(1)1σ(2)1 · · ·σ(s)1σ′,
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where σ(i) and σ′ have parts in [2, d], each σ(i) avoids 12 and σ′ avoids 23-1. The generating function

is given by
(

xyAC12
[2,d](x, y)

)s

AC23−1
[2,d] (x, y) for s ≥ 1. Altogether,

AC23−1
[d] (x, y) = AC23−1

[2,d] (x, y) +
xyAC12

[2,d](x, y)

1 − xyAC12
[2,d](x, y)

AC23−1
[2,d] (x, y),

which is equivalent to

AC23−1
[d] (x, y) =

AC23−1
[2,d] (x, y)

1 − xyAC12
[2,d](x, y)

.

Using the above recurrence d times we obtain that

AC23−1
[d] (x, y) =

d
∏

i=1

1

1 − xiyAC12
[i+1,d](x, y)

.

Using the fact that AC12
[i+1,d](x, y) =

∏d

j=i+1(1 − xjy)−1 we complete the proof. �

Example 4.4. Taking the limit d → ∞ together with the substitution y = 1 in Theorem 4.3 we get
that the generating function for the number of compositions of n that avoid the pattern 23-1 is given
by

AC23−1
N

(x, 1) =
∏

i≥1

(

1 −
xi

∏

j≥i+1(1 − xj)

)

.

The sequence for the number of compositions of n that avoid 23-1 for n = 0 to n = 20 is given by 1,
1, 2, 4, 8, 16, 31, 61, 118, 228, 440, 846, 1623, 3111, 5955, 11385, 21752, 41530, 79250, 151161 and
288224.

Using arguments similar to those in the proofs of Theorems 4.1 and 4.3 we obtain a recursive result.
Finding an explicit expression for AC13−2

[d] (x, y) remains an open question.

Lemma 4.5. The generating function AC13−2
[d] (x, y) for the number of compositions of n with m parts

in [d] that avoid 13-2 satisfies

AC13−2
[d] (x, y) = 1 +

d
∑

i=1

AC13−2
[d] (i|x, y),

where

AC13−2
[d] (i|x, y) = xiy

(

1 +
∑i+1

j=1 AC13−2
[d] (j|x, y)

+
∑d

j=i+2 AC13−2
{1,...,i,j,...,d}(j|x, y)

)

.

Example 4.6. Using d = 15 and y = 1 in Lemma 4.5 we get that the sequence for the number of
compositions of n that avoid 13-2 for n = 0 to n = 15 is given by 1, 1, 2, 4, 8, 16, 31, 60, 115, 218,
411, 770, 1434, 2656, 4897 and 8991.
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5. Conclusion

We have completely classified avoidance of the permutation patterns of type (2, 1) and given explicit
generating functions for all but the pattern 13-2, which remains an open question. A natural extension
is to consider avoidance of multi-permutation patterns of this type, namely the patterns 11-1, 11-2,
12-1, 12-2, 21-1, 21-2 and 22-1. We already have some partial results for these patterns, such as
the classification according to Wilf-equivalence, and plan to describe the complete results in our
forthcoming book.
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