Complex Analysis Comprehensive Examination

Akis*, Gutarts, Shaheen

Do five of the following seven problems. If you attempt more than 5, the best 5 will be used.

1. Evaluate \[\oint_{\gamma} \frac{1}{e^z - 1} \, dz \] where \(\gamma \) is the circle of radius 9 centered at 0.

2. a. Show that \(|e^{-2z}| < 1 \), if and only if, \(\text{Re} \, z > 0 \).

 b. Show that \[\left| \oint_{\gamma} \frac{e^{-2z}}{z} \, dz \right| < \frac{3}{\sqrt{5}} \] where \(\gamma \) is the line segment from \(2 + i \) to \(5 + i \).

3. For each of the following real valued functions of two variables \(u(x, y) \), determine if there is a real valued function \(v(x, y) \) such that \(f(z) = f(x + iy) = u(x, y) + iv(x, y) \) is analytic. Either find \(v(x, y) \), or explain why such function does not exist.

 a. \(u(x, y) = \sin x - xy \)
 b. \(u(x, y) = e^{-y} \sin x \)

4. Find the Laurent series expansion for \(f(z) = \frac{1}{z^2(1 - z)} \)

 valid on in each of the regions \(0 < |z| < 1 \), \(1 < |z| < \infty \), and find the residue of \(f(z) \) at \(z_0 = 0 \).

5. Suppose \(n \) is a positive integer. Show there are exactly \(n \) solutions counting multiplicity, to the equation \(e^z = 4z^n - 1 \) in the unit disk \(|z| < 1 \).

6. Consider the arcs \(C_1 \) defined by \(z_1(t) = e^{it} \) where \(0 \leq t < \frac{3\pi}{2} \), and \(C_2 \) defined by \(z_2(t) = t + i(t - 1) \) where \(0 \leq t \leq 1 \).
a. Draw the contour $C = C_1 + C_2$, and find its length.

b. Evaluate the integrals

$$\int_{C_1} \frac{dz}{z}, \quad \int_{C_2} \frac{dz}{z}, \quad \int_{C} \frac{dz}{z}.$$

7. Evaluate the following integrals by using residues:

a. $\int_0^\infty \frac{dx}{x^4 + 1}$

b. $\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 1)(x^2 + 2x + 2)}$