Spring 2021 # 1. Describe and sketch each of the following sets of complex numbers.

(a) \(\{ z \mid \overline{z} = \frac{1}{z} \} \)

(b) \(\{ e^z \mid z = x + iy \text{ and } 1 < x < 2 \text{ and } \frac{3\pi}{4} < y \leq \frac{5\pi}{4} \} \)

(c) \(\{ z \mid |z - i| \leq \text{Im}(z) \} \)

Spring 2021 # 2. Compute the following integrals.

(a) \(\int_{\gamma} \frac{e^{z^2}}{z^3} \, dz \) where \(\gamma \) is the unit circle oriented counter-clockwise

(b) \(\int_{0}^{\infty} \frac{x^2}{1 + x^4} \, dx \)

Spring 2021 # 3. Let \(f(z) = \frac{\sin(z)}{(e^z - 1)^2} \)

(a) Classify the singularity of \(f \) at \(z_0 = 0 \). That is, is it a removable singularity, a pole of order \(m \), or an essential singularity?

(b) Compute the integral \(\int_{\gamma} f(z) \, dz \) where \(\gamma \) is the unit circle oriented counter-clockwise
Spring 2021 # 4. Let \(p(z) = z^4 + 3z^3 + 6 \).

(a) Show that \(p(z) \) has three zeros (counting multiplicity) in the set \(\{ z \mid |z| < 2 \} \)

(b) Show that \(p(z) \) has one zero (counting multiplicity) in the set \(\{ z \mid 2 \leq |z| < 4 \} \)

Spring 2021 # 5. Prove that a sequence of complex numbers \(\{ z_n \} \) converges if and only if \(\{ z_n \} \) is Cauchy.

Note: You may use the fact that \(\mathbb{R} \) is complete.

Spring 2021 # 6. We say a function \(f: \mathbb{R} \to \mathbb{R} \) preserves orientation if \(f(x_1) < f(x_2) \) whenever \(x_1 < x_2 \), and reverses orientation if \(f(x_1) > f(x_2) \) whenever \(x_1 < x_2 \).

If possible, find an entire function \(g: \mathbb{C} \to \mathbb{C} \) such that

\[
\text{Im} \left[g(x + i0) \right] = 0 = \text{Re} \left[g(0 + iy) \right],
\]

and \(f_1: \mathbb{R} \to \mathbb{R} \) defined by \(f_1(x) = g(x + i0) \) preserves orientation, while \(f_2: \mathbb{R} \to \mathbb{R} \) defined by \(f_2(y) = g(0 + iy) \) reverses orientation. If not possible, prove that no such function \(g \) exists.

Spring 2021 # 7. If possible, find an entire function \(g: \mathbb{C} \to \mathbb{C} \) such that

\[
g'(z) = \begin{cases}
z & \text{if } |z| < 1 \\
2z & \text{if } |z| > 2
\end{cases}
\]

If not possible, prove that no such function \(g \) exists.