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ABSTRACT

Calculating Matrix Rank

Using a Generalization of the Wronskian

By

Jayson Grassi

By mapping the rows/columns of a matrix, M , to a set of polynomials, and

then calculating the Wronskian of that set we can deterimine whether or not the

rows/columns of M are linearly independent. However, if the rows/columns of M are

linearly dependent, the Wronskian does not provide any additional insight into the

exact dimension of the span of these vectors.

We call the dimension of the span of the rows/columns of a matrix M , the

rank of M . In this thesis we define the rank of a two variable polynomial and show

that there is a natural mapping between matrices and polynomials of two variables

that preserves rank. Using this mapping, we take concepts that apply to single vari-

able polynomials, like Wronskians, and generalize them to two variable polynomials.

Finally we show how these tools can be used to calculate the rank of a matrix.
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CHAPTER 1

Introduction

Given an m × n matrix over a field F, one property that may be of interest

to us is the rank of that matrix. The formal definition of matrix rank will be given

in Chapter 2 along with some lemmas about matrices, determinants and differential

equations that will prove useful throughout this thesis. The reader should already

be aware that there are many different methods for calculating matrix rank, each

with its own benefits and drawbacks. For example, if one wanted to know the exact

rank of a matrix, one could first put it into row echelon form and then calculate

the rank of the row equivalent matrix easily. Alternatively, one could calculate all

the possible k-minors of the matrix for each possible k and deduce the rank of the

matrix to be the largest value k for which there exists a nonzero k-minor. Sometimes

one may simply wish to know whether or not the rank of a matrix is the largest it

could possibly be for a matrix of that given size, that is to say, whether the matrix

has full rank or not. For this, one may make use of the Wronskian. Introduced in

1812 by Józef Hoëne-Wroński (1776-1853) [5], the Wronskian is a type of determinant

used mainly in the study of differential equations to test for linear dependence among

solution sets. In Chapter 3 we define the Wronskian as well as the alternant [4],

another type of determinant that could be considered a relative of the Wronskian.

By mapping the rows/columns of a matrix into polynomials and then calculating the

Wronskian of those polynomials one can determine whether or not the rows/columns

of a matrix form a linearly dependent set, thus determining if the matrix has full

rank. The Wronskian is a quick and efficient tool, so it is easy to see why we would

1



like to generalize the Wronskian into an operator that can be used to calculate the

rank of a matrix rather than just determine if it is full rank or not. In Chapter 4 of

this thesis, we construct this operator in a way that reduces back to the Wronskian

method when the matrix has full rank.

The concept of generalizing the Wronskian was first introduced by Ostrowski

[1]. However, because our intent is to generalize the Wronskian so that we may

calculate the rank of a matrix, Ostrowski’s definition of the generalized Wronskian

will not suffice. Instead, we must first make a connection between the Wronskian and

the alternant for a set of polynomials. We see in Chapter 3 that the two share the

property that they are zero if and only if the set of polynomials is linearly dependent.

Then in Chapter 4 we introducing the reader to the rank of a two variable polynomial

and easily generalize the alternant to work on a two variable polynomial. In this way

we can construct a generalization of the Wronskian that will satisfy lemmas that

mirror those from Chapter 3 about the Wronskian and the alternant. This thesis

then concludes with Theorem 5.3 in Chapter 5 tying together the concepts of rank

of a matrix, the rank of a polynomial in two variables, the generalized alternant, and

the generalized Wronskian.
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CHAPTER 2

Matrices and Determinants

We begin this thesis with a chapter covering some of the more useful properties

of matrices and their determinants. As with any discussion involving the Wronskian,

differential equations are an integral part of the underlying mathematics at work

here, and so we also include Lemma 2.7 whose proof is rarely introduced at the

undergraduate level and therefore often unknown to many graduate readers. These

facts and lemmas are used throughout the remainder of this thesis, and so we provide

proofs that are in the same spirit of what is to come later on. For a more in depth

look at the matrial in this chapter we refer the reader to graduate texts in linear

algebra and differential equations like “Advanced Linear Algebra” [6] and “Theory of

Ordinary Differential Equations” [7].

All matrices are assumed to be over a field F of characteristic zero unless

otherwise stated. This is to make use of the property that for any polynomial f(x) ∈

F[x], f(a) = 0 for all a ∈ F if and only if f(x) ≡ 0. For a matrix A, we write colA

for the column space of A and rowA for the row space of A.

Lemma 2.1. [2] Let A be an m× n matrix. Then dim (colA) = dim (rowA).

We define the rank of A, rankA, to be dim (colA) = dim (rowA).

Theorem 2.2. [3] Let A be an m×n matrix and k ∈ N. The following are equivalent:

(1) rankA ≤ k.

(2) A = CB for some m× k matrix C and k × n matrix B.

(3) A = C1 + C2 + · · ·+ Ck for some m× n rank one matrices C1, C2, . . . , Ck.
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Proof. By definition, rankA ≤ k if and only if there exists k column vectors c1, . . . , ck

of size m such that for each column vj of A we have vj =
k∑

i=1

bijci for some bij ∈ F.

Let C be the matrix whose columns are c1, . . . , ck and B =
[
bij
]
. Then A = CB.

Conversely, if A = CB for some m × k matrix C and k × n matrix B, then

colA ⊆ colC which implies that rankA ≤ rankC ≤ k. So we have (1) if and only if (2).

Now (1) holds if and only if there are column vectors c1, c2, . . . , cn and scalars

bij such that A can be written as follows,

A = [v1|v2| · · · |vn]

=

[
k∑

i=1

bi1ci

∣∣∣∣∣
k∑

i=1

bi2ci

∣∣∣∣∣ · · ·
∣∣∣∣∣

k∑
i=1

binci

]

=
k∑

i=1

[bi1ci|bi2ci| · · · |binci]

=
k∑

i=1

Ci

where each Ci = [bi1ci|bi2ci| · · · |binci] is a m×n matrix with rank 1 since each column

of Ci is a scalar multiple of ci. So then (1) holds if and only if (3) holds.

This theorem can be read as saying that the rank of a matrix A is the smallest

number k such that A can be written as a sum of k rank one matrices. Later we use

this idea to define the rank of a polynomial in two variables.

A useful property of determinants is the fact that they are multilinear functions

of the columns/rows, and we will make use of this in later proofs. The following lemma

formalizes this property.

Lemma 2.3. [8] Let v1,v2, . . . ,vn,w be n column vectors in Fn. Then

det ([v1|v2| . . . |vi + w| . . . |vn]) = det ([v1|v2| . . . |vi| . . . |vn])+det ([v1|v2| . . . |w| . . . |vn])
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The idea of solution spaces play a large part in differential equations and,

because differential equations is the birthplace of the Wronskian, it is necessary that

we introduce some terminology from differential equations along with a few lemmas

that may seem out of place right now, but will be useful in Chapter 3 when we begin

working with the Wronskian.

Definition 2.4. We define the differentiation operator

D : F[x]→ F[x]

by D(f(x)) = f
′
(x), and use the notation Dn(f(x)) := Dn−1(D(f(x))).

Definition 2.5. A differential operator P(D) = cnD
n + cn−1D

n−1 + · · · + c1D + c0,

with coefficients ci ∈ F[x], is a function

P(D) : F[x]→ F[x]

defined by P(D)(y) = cnD
n(y) + cn−1D

n−1(y) + · · ·+ c1D(y) + c0y for all y ∈ F[x].

Lemma 2.6. Let P(D) = cn(x)Dn+cn−1(x)Dn−1+· · ·+c1(x)D+c0(x) be a differential

operator with coefficients cn, cn−1, . . . , c0 ∈ F[x] such that cn(0) 6= 0. If y = f(x)xn ∈

F[x] is a solution of the differential equation P(D)(y) = 0 for some f ∈ F[x], then

f = 0.

Proof. Suppose, to the contrary, that f 6= 0. Let akx
k be the lowest degree term of

f with ak 6= 0. Since y = f(x)xn is a solution of the given homogeneous differential

equation, it is also a solution of all derivatives of this equation, in particular, it is a

solution of its kth derivative. Using the product rule repeatedly, we see that the kth

derivative of P(D)(y) = 0 has the form

Dk(P(D)(y)) = cn(x)Dn+ky + terms of lower order in D

5



Because of the form of the solution y = f(x)xn, if we apply the differential operator

Dk(P(D)(y)) and set x = 0 we get

cn(x)Dn+k(f(x)xn)
∣∣
x=0

= cn(x)Dn+k(akx
n+k)

∣∣
x=0

= (n+ k)!cn(0)ak

But, with our assumptions, this expression is nonzero, which means that y = f(x)xn

cannot be a solution of P(D)(y) = 0 when f is nonzero.

Lemma 2.7. Let

P(D) = cn(x)Dn + cn−1(x)Dn−1 + · · ·+ c1(x)D + c0(x)

be a differential operator with coefficients cn, cn−1, . . . , c0 ∈ F[x] such that cn 6= 0.

Then the dimension of the space of polynomial solutions of the differential equation

P(D)(y) = 0 is at most n.

Proof. First assume that cn(0) 6= 0. Let f1 = g1 + xnh1, f2 = g2 + xnh2, . . . , fn+1 =

gn+1 + xnhn+1 ∈ F[x] be polynomial solutions of P(D)(y) = 0 with deg(gi) < n. The

space of polynomials of degree less than n has dimension n, so the set {g1, g2, . . . , gn+1}

is linearly dependent. Thus there are a1, a2, . . . , an+1 ∈ F, not all zero, such that

n+1∑
i=1

aigi = 0. Then

n+1∑
i=1

aifi =
n+1∑
i=1

ai(gi + xnhi) =
n+1∑
i=1

aigi +
n+1∑
i=1

aix
nhi = 0 +

(
n+1∑
i=1

aihi

)
xn = f(x)xn

is a solution of P(D)(y) = 0, for some f =
∑n+1

i=1 aihi ∈ F[x]. Since f(x)xn is

a solution of the differential equation, Lemma 2.6 implies that f = 0. Thus the

polynomials f1, f2, . . . , fn+1 are linearly dependent over F. This implies that the

dimension of the space of polynomial solutions of the differential equation P(D) = 0

is at most n.
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In general, cn(0) may be zero so the above argument does not work. But since

cn is a nonzero polynomial, there is some a ∈ F such that cn(a) 6= 0. Then, once all

polynomials have been shifted by a, the above argument does apply.
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CHAPTER 3

Wronskians

Definition 3.1. Let F be a field of characteristic zero. Let f1, f2, f3, . . . be a sequence

of polynomials in F[x]. For n ∈ N, define Vn ∈ F[x1, x2, . . . , xn] by

Vn = V (f1, f2, . . . , fn, x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣
f1(x1) f2(x1) · · · fn(x1)
f1(x2) f2(x2) · · · fn(x2)

...
...

. . .
...

f1(xn) f2(xn) · · · fn(xn)

∣∣∣∣∣∣∣∣∣
It will sometimes be convenient to use the following notation. We write

x = (x1, x2, . . . , xn) ∈ Fn fn = {f1, f2, . . . , fn} fn(x) = {f1(x), f2(x), . . . , fn(x)} .

The matrix above, whose determinant is Vn, is called the alternant matrix for

f1, f2, . . . , fn, and we denote it as fn(x). So Vn = V (fn,x) = |fn(x)|. Vn is the

alternant determinant (or just the alternant) of fn. [4]

Example 3.2. Examples of alternant matrices include the Vandermonde matrices,

named after Alexandre-Théophile Vandermonde, where fi(x) = xi−1. For n = 3 we

have

f3(x) =

1 x1 x21
1 x2 x22
1 x3 x23


To calculate the alternant V (f3,x), first let x1 = x, x2 = a2 and x3 = a3. Then we

have,

V (f3, x, a2, a3) =

∣∣∣∣∣∣
1 x x2

1 a2 a22
1 a3 a23

∣∣∣∣∣∣
Evaluating along the top row we see that this is a polynomial f(x) of degree 2 with

roots x = a2 and x = a3. Thus f(x) = C(x− a2)(x− a3) where C is the coefficient of

x2. Which is easily seen to be

∣∣∣∣1 a2
1 a3

∣∣∣∣ = (a3−a2). Thus f(x) = (a3−a2)(x−a2)(x−a3).
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Rearranging terms and making the substitutions x = x1, a2 = x2 and a3 = x3, we get

V (f3,x) = (x3 − x2)(x3 − x1)(x2 − x1).

The result generalizes to arbitrary Vandermonde matrices. So, for

fi(x) = xi−1, we have

V (fn,x) =
∏

1≤i<j≤n

(xj − xi).

Notice that the Vandermonde determinant is alternating in the entries, mean-

ing an odd permutation of the indeterminants changes the sign, while an even per-

mutation of the indeterminants does not change the value of the determinant. �

Lemma 3.3. If Vn−1 6= 0 and Vn = 0, then fn is linearly dependent.

Proof. Because F has characteristic zero and Vn−1 6= 0, there exist u1, u2, . . . , un−1 ∈ F

such that Vn−1 (u1, u2, . . . , un−1) ∈ F is nonzero. Expanding the determinant for Vn

along the bottom row, setting x1 = u1, x2 = u2, . . . , xn−1 = un−1 and xn = x, we get

0 = Vn = a1f1(x) + a2f2(x) + · · ·+ anfn(x)

where a1, a2, . . . , an ∈ F are (n− 1) × (n− 1)-minors of the matrix fn(x). Since

an = Vn−1 (u1, u2, . . . , un−1) 6= 0, the linear combination is nontrivial and fn is linearly

dependent.

Lemma 3.4. fn is linearly dependent if and only if V (fn,x) = 0.

Proof. Suppose that {f1, f2, . . . , fn} is linearly dependent. Without loss of generality

we can assume that f1 is a linear combination of f2, f3, . . . , fn. This implies that the

first column of the matrix defining Vn is a linear combination of the other columns.

Thus Vn, the determinant of this matrix, is zero.
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Now suppose that Vn = 0. If V1 = f1(x1) is zero, then the claim is obviously

true. Otherwise we have V1 6= 0 and Vn = 0, so there must be some 1 < k ≤ n such

that Vk−1 6= 0 and Vk = 0. By Lemma 3.3, {f1, f2, . . . , fk} is linearly dependent. This

implies that {f1, f2, . . . , fn} is also linearly dependent.

Lemma 3.5. fn is linearly independent if and only if there is u = (u1, u2, . . . , un) ∈ Fn

such that the matrix M = fn(u) is invertible.

Proof. Let u ∈ Fn be such that M = fn(u) is invertible. Let a1, a2, . . . , an ∈ F such

that

a1f1(x) + a2f2(x) + · · ·+ anfn(x) = 0

for all x. Then we have the system of equations

a1f1(u1) + a2f2(u1) + · · ·+ anfn(u1) = 0

a1f1(u2) + a2f2(u2) + · · ·+ anfn(u2) = 0

...

a1f1(un) + a2f2(un) + · · ·+ anfn(un) = 0

which corresponds to the matrix equation
f1(u1) f2(u1) · · · fn(u1)
f1(u2) f2(u2) · · · fn(u2)

...
...

. . .
...

f1(un) f2(un) · · · fn(un)



a1
a2
...
an

 =


0
0
...
0


Because the matrix fn(u) is invertible we must have ai = 0 for all i = 1, 2, . . . , n, and

thus fn is linearly independent.

Now assume that for all u ∈ Fn the matrix fn(u) is singular. We show, by

induction on n that the set of polynomials fn is linearly dependent.
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Let n = 1. Then the matrix fn(u) is just [f1(u1)] which is singular for all u1 ∈ F only if

f1 = 0, which, of course, means that fn is linearly dependent. Now we assume that the

lemma holds for n− 1 polynomials and consider the set fn = {f1, f2, . . . , fn}. Recall

fn−1 denotes the set {f1, f2, . . . , fn−1}. We may assume that there exists an element

un−1 = (u1, u2, . . . , un−1) ∈ Fn−1 such that the matrix fn−1(un−1) is nonsingular, else

by the inductive hypothesis fn−1 is linearly dependent and then so is fn. Consider the

matrix fn(u1, u2, . . . , un−1, x). We know, by assumption, that for all x ∈ F∣∣∣∣∣∣∣∣∣∣∣

f1(u1) f2(u1) · · · fn(u1)
f1(u2) f2(u2) · · · fn(u2)

...
...

. . .
...

f1(un−1) f2(un−1) · · · fn(un−1)
f1(x) f2(x) · · · fn(x)

∣∣∣∣∣∣∣∣∣∣∣
= 0

Expanding the determinant along the bottom row we get the nontrivial linear combi-

nation c1f1(x) + c2f2(x) + · · ·+ cnfn(x) = 0, where cn = |fn−1(un−1)| 6= 0. Therefore

fn is linearly dependent.

Definition 3.6. [5] The Wronskian of f1, f2, . . . , fn ∈ F[x] is defined by

Wn = W (fn, x) =

∣∣∣∣∣∣∣∣∣
f1(x) f

′
1(x) · · · f

(n)
1 (x)

f2(x) f
′
2(x) · · · f

(n)
2 (x)

...
...

. . .
...

fn(x) f
′
n(x) · · · f

(n)
n (x)

∣∣∣∣∣∣∣∣∣
Example 3.7. Let f1(x) = x3, f2(x) = x2, f3(x) = x. Then

W (f3, x) =

∣∣∣∣∣∣
x3 x2 x
3x2 2x 1
6x 2 0

∣∣∣∣∣∣
= 0

∣∣∣∣ x3 x2

3x2 2x

∣∣∣∣− 1

∣∣∣∣x3 x2

6x 2

∣∣∣∣+ x

∣∣∣∣3x2 2x
6x 2

∣∣∣∣
= −(2x3 − 6x3) + x(6x2 − 12x2)

= −2x3 �
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Notice that Wn ∈ F[x], and when each fi(x) is a monomial, as in the example

above, then W (fn, x) is also a monomial.

Lemma 3.8. Let f and g be polynomials over R. Then {f, g} is linearly dependent

over R if and only if W (f, g) = 0.

Proof. If {f, g} is linearly dependant, then without loss of generality, g = cf for some

constant c ∈ R. Then Dg = cDf and so W (f, g) = 0.

The converse is obviously true if f = g = 0, so we suppose that W (f, g) = 0

and f 6= 0. Since f is nonzero and has at most finitely many roots, there is an open

interval I of the real line on which f is never zero. Then g/f is a real differentiable

function on I. The derivative of g/f on I is

d

dx

(
g

f

)
=
fDg − gDf

f 2
=
W (f, g)

f 2
= 0.

This implies that g/f is constant on I, or, equivalently, there is a constant c ∈ R

such that cf(x) − g(x) = 0 for all x ∈ I. Since cf(x) − g(x) is a polynomial that

is identically zero on an open interval I ⊂ R we must have cf(x) − g(x) = 0 for all

x ∈ R. Which implies that g = cf and {f, g} is linearly dependant.

The condition that the functions in Lemma 3.8 be polynomials has been gen-

eralized to sets of analytic functions on R and C, however it is known that there

are some examples of linearly independent functions, which are not analytic, whose

Wronskian is nonzero. The most famous example of this was first provided by Peano

[9] who observed that the functions f(x) = x and g(x) = x|x| defined on R are linearly

independent, but their Wronskian vanishes identically. Later Bôcher[12] proved more

generally that there exist families of infinitely differentiable real functions sharing the

12



same property.

The following lemma is a generalization of the previous result into the realm

of fields of characteristic zero.

Lemma 3.9. [10] A set of polynomials {f1, f2, . . . , fn} ⊆ F[x] is linearly dependent

if and only if Wn = 0.

Proof. Let {f1, f2, . . . , fn} be a linearly dependent set of polynomials in F[x]. Then

there exists c1, c2, . . . , c2 ∈ F, not all zero, such that c1f1 + c2f2 + · · · + cnfn = 0.

Because the derivative is a linear operator we have c1f
(i)
1 + c2f

(i)
2 + · · · + cnf

(i)
n = 0

for all i ∈ N. So the columns of the Wronskian matrix are linearly dependent which

implies W (fn, x) = 0.

Now assume that W (fn, x) = 0. If fi(x) = 0 for all i = 1, 2, . . . , n then the

claim is trivially true. So we may assume, without loss of generality, that f1(x) is

not identically zero. So W (f1) 6= 0. Then there exists an integer m ≤ n such that

Wm−1 6= 0 and

W (f1, f2, . . . , fm) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fm(x)
f

′
1(x) f

′
2(x) · · · f

′
m(x)

...
...

. . .
...

f
(m−1)
1 (x) f

(m−1)
2 (x) · · · f

(m−1)
m (x)

∣∣∣∣∣∣∣∣∣ = 0

Evaluating along the last column we get

Gm−1(x)f (m−1)
m +Gm−2(x)f (m−2)

m + · · ·+G0(x)fm = 0

where each Gi(x) ∈ F[x] and Gm−1(x) = Wm−1 6= 0. So fm is a solution of the

(m− 1)-order linear differential equation

Gm−1(x)y(m−1) +Gm−2(x)y(m−2) + · · ·+G0(x)y = 0 (3.1)

13



For each i = 1, 2, . . . ,m− 1, fi(x) is a solution to (3.1). Because (3.1) is a linear dif-

ferential equation with coefficients in F[x] and order (m−1) we know, by Lemma 2.7,

that it has at most m − 1 linearly independent solutions. Thus {f1, f2, . . . , fm} is

linearly dependent, and therefore so is {f1, f2, . . . , fn}.

Example 3.10. Let us employ Lemma 3.9 to verify the linear independence of the

following polynomials in C[x],

f1(x) = 2x2 + (2i− 1)x+ 1, f2(x) = x2 + ix− 1, f3(x) = 2x− i

We have

W (f1, f2, f3) =

∣∣∣∣∣∣
(2x2 + (2i− 1)x+ 1) (x2 + ix− 1) (2x− i)

(4x+ 2i− 1) 2x+ i 2
4 2 0

∣∣∣∣∣∣
= 4

∣∣∣∣(x2 + ix− 1) (2x− i)
2x+ i 2

∣∣∣∣− 2

∣∣∣∣(2x2 + (2i− 1)x+ 1) (2x− i)
(4x+ 2i− 1) 2

∣∣∣∣
= −12 + 2i 6= 0

Thus, by Lemma 3.9, the three polynomials are linearly independent. �

Lemma 3.11. Let f1, f2, . . . , fn ∈ F[x] be polynomials of degree ≤ m, with m ≥ n−1.

Then

deg (Wn) ≤ mn− n2 + n

Proof. Let fi(x) =
m∑
k=0

ai,kx
k for some ai,k ∈ F. Then

W (fn) = W

(
m∑
k=0

a1,kx
k,

m∑
k=0

a2,kx
k, . . . ,

m∑
k=0

an,kx
k

)

=
m∑

k1=0

m∑
k2=0

· · ·
m∑

kn=0

W
(
a1,k1x

k1 , a2,k2x
k2 , . . . , an,knx

kn
)
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By Lemma 3.9, W
(
a1,k1x

k1 , a2,k2x
k2 , . . . , an,knx

kn
)

= 0 whenever ki = kj for some

i 6= j. This implies that deg (Wn) ≤ degW
(
xm, xm−1, . . . , xm−(n−1)

)

= deg

∣∣∣∣∣∣∣∣∣
xm xm−1 · · · xm−(n−1)

(m)1x
m−1 (m− 1)1x

m−2 · · · (m− n+ 1)1x
m−n

...
...

. . .
...

(m)n−1x
m−(n−1) (m− 1)n−1x

m−n · · · (m− n+ 1)n−1x
m−2(n−1)

∣∣∣∣∣∣∣∣∣
= m+ (m− 2) + (m− 4) + · · ·+ (m− 2(n− 1))

=
n−1∑
i=0

m− 2i = mn− n2 + n

The coefficients in the above determinant are falling factorials

(m)k = m(m− 1) · · · (m− (k − 1))

Note that in the previous theorem, if m < n−1, the polynomials are necessarily

linearly dependent and therefore deg(Wn) = 0.

If we apply Lemma 3.11 to Example 3.10 where n = 3 and m = 2 we get

deg (W (f1, f2, f3)) ≤ 2(3) − 32 + 3 = 0 which is verified by our calculation that

W (f1, f2, f3) = −12 + 2i.

We now make a connection between the Wronskian and the alternant that is

rarely observed in undergraduate or graduate courses. This is a connection that we

preserve when crafting analogues of the alternant and the Wronskian for two variable

polynomials in Chapter 4.

Define the function δ(x) =
∏
j<k

(xk − xj), and δ(x1) = 1. So, for example, if

x = (1, 2, . . . , n) ∈ Rn then we have

δ(x) = δ(1, 2, . . . , n) =
∏

1≤j<k≤n

(k − j) =
n−1∏
k=1

k!

15



Lemma 3.12. Let f1, f2, . . . , fn ∈ F[x], Wn = W (fn) and Vn = V (fn) be as in

Definition 3.6 and Definition 3.1 respectively. Then

Wn =
δ(1, 2, . . . , n)Vn

δ(x)

∣∣∣∣
x1=x2=···=xn=x

Proof. Let xi = x + yi, where x and yi are indeterminants in F. Then δ(x) = δ(y),

and expressing fj as a Taylor series we get fj(xi) =
∞∑
k=0

1

k!
f
(k)
j (x)yki . So then,

Vn
δ(x)

=
1

δ(y)

∣∣∣∣∣∣∣∣∣

∑
1
k!
f
(k)
1 (x)yk1

∑
1
k!
f
(k)
2 (x)yk1 · · ·

∑
1
k!
f
(k)
n (x)yk1∑

1
k!
f
(k)
1 (x)yk2

∑
1
k!
f
(k)
2 (x)yk2 · · ·

∑
1
k!
f
(k)
n (x)yk2

...
...

. . .
...∑

1
k!
f
(k)
1 (x)ykn

∑
1
k!
f
(k)
2 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣
Making use of Lemma 2.3, which describes the multilinearity of determinants, we get

Vn
δ(x)

=
1

δ(y)

∞∑
m=1

∣∣∣∣∣∣∣∣∣
1
m!
f
(m)
1 (x)ym1

1
m!
f
(m)
2 (x)ym1 · · · 1

m!
f
(m)
n (x)ym1∑

1
k!
f
(k)
1 (x)yk2

∑
1
k!
f
(k)
2 (x)yk2 · · ·

∑
1
k!
f
(k)
n (x)yk2

...
...

. . .
...∑

1
k!
f
(k)
1 (x)ykn

∑
1
k!
f
(k)
2 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣
Let x1 = x, so y1 = 0. Then

Vn
δ(x)

∣∣∣∣
x1=x

=
1

δ(y2, . . . , yn)
n∏

j=2

yj

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)∑

1
k!
f
(k)
1 (x)yk2

∑
1
k!
f
(k)
2 (x)yk2 · · ·

∑
1
k!
f
(k)
n (x)yk2

...
...

. . .
...∑

1
k!
f
(k)
1 (x)ykn

∑
1
k!
f
(k)
2 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣
Distributing

1

y2
from the product in the denominator to the second row, and again

making use of the multilinearity of determinants we get,

Vn
δ(x)

∣∣∣∣
x1=x

=
1

δ(y2, . . . , yn)
∏n

j=3 yj

∞∑
m=0

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)
1
m!
f
(m)
1 (x)ym−12 · · · 1

m!
f
(m)
n (x)ym−12∑

1
k!
f
(k)
1 (x)yk3 · · ·

∑
1
k!
f
(k)
n (x)yk3

...
. . .

...∑
1
k!
f
(k)
1 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣∣∣
Notice that for the m = 0 term of the sum, the determinant vanishes because row 1

and row 2 are linearly dependent. So this becomes a sum from m = 1 to∞. Next let
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x2 = x so y2 = 0. Then we have,

Vn
δ(x)

∣∣∣∣x1=x
x2=x

=
1

δ(y3, y4, . . . , yn)
∏n

j=3(yj)
2

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)
f

′
1(x) . . . f

′
n(x)∑

1
k!
f
(k)
1 (x)yk3 · · ·

∑
1
k!
f
(k)
n (x)yk3

...
. . .

...∑
1
k!
f
(k)
1 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣∣∣
Distributing 1

(y3)2
from the product in the denominator to the third row, and using

multilinearity we get,

Vn
δ(x)

∣∣∣∣x1=x
x2=x

=
1

δ(y3, y4, . . . , yn)
∏n

j=4(yj)
2

∞∑
m=0

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)
f

′
1(x) · · · f

′
n(x)

1
m!
f
(m)
1 (x)ym−23 · · · 1

m!
f
(m)
n (x)ym−23

...
. . .

...∑
1
k!
f
(k)
1 (x)ykn · · ·

∑
1
k!
f
(k)
n (x)ykn

∣∣∣∣∣∣∣∣∣∣∣
Again notice that for the m = 0 and m = 1 terms of the sum, the determinant

vanishes by linear dependence. So this becomes a sum from m = 2 to ∞.

Continuing this process, setting each xi = 0 and then distributing
1

(yi)i−1
into

the ith row of the determinant we get,

Vn
δ(x)

∣∣∣∣
x1=x2=···=x

=

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)
f

′
1(x) · · · f

′
n(x)

1
2!
f

′′
1 (x) · · · 1

2!
f

′′
n (x)

...
. . .

...
1

n−1!f
(n−1)
1 (x) · · · 1

n−1!f
(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣

=
1

δ(1, 2, . . . , n)

∣∣∣∣∣∣∣∣∣∣∣

f1(x) · · · fn(x)
f

′
1(x) · · · f

′
n(x)

f
′′
1 (x) · · · f

′′
n (x)

...
. . .

...

f
(n−1)
1 (x) · · · f

(n−1)
n (x)

∣∣∣∣∣∣∣∣∣∣∣
=

1

δ(1, 2, . . . , n)
W (f1, f2, . . . , fn)

Example 3.13. Let f1 = x3, f2 = x2, f3 = x. Then

V3 =

∣∣∣∣∣∣
x31 x21 x1
x32 x22 x2
x33 x23 x3

∣∣∣∣∣∣
17



Using the same trick we used in Example 2.2, we let x1 = x, x2 = a2 and x3 = a3

getting a third degree polynomial

f(x) =

∣∣∣∣∣∣
x3 x2 x
a32 a22 a2
a33 a23 a3

∣∣∣∣∣∣
which has roots x = 0, x = a2 and x = a3 and leading coefficient C = (a22a3−a2a23) =

a2a3(a2 − a3). So f(x) = a2a3(a2 − a3)(x − 0)(x − a2)(x − a3). A quick flip of the

terms (a2−a3), (x−a2), and (x−a3) in order to better align with the terms of δ(x),

and reversing the substitions we made gives us

V3 = −x3x2x1(x3 − x2)(x3 − x1)(x2 − x1)

= −x1x2x3δ(x)

Now we evaluate

δ(1, 2, 3)V3
δ(x)

∣∣∣∣
x1=···=x

= −2x3

= W (f1, f2, f3)

as we saw in Example 2.7. �
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CHAPTER 4

Polynomials of Two Variables

We now take the ideas from Chapter 2 and Chapter 3, and introduce analogues

of them for the ring of polynomials F[x, y]. Let F be a field of characteristic zero and

F ∈ F[x, y] a polynomial in x and y. We begin by defining the rank of F in a way

that bears a resemblance to Theorem 2.2. Then we create analogues of Vn and Wn

that apply to F[x, y].

Definition 4.1. The rank of F ∈ F[x, y], denoted rankF , is the least n ∈ N such

that

F (x, y) = g1(x)h1(y) + g2(x)h2(y) + · · ·+ gn(x)hn(y) (4.1)

for some g1, g2, . . . , gn ∈ F[x] and h1, h2, . . . , hn ∈ F[y]. If F = 0, then we define

rankF = 0.

This is a particular application of the more general definition of tensor rank. [11]

Notice that if F has y-degree k (written degy F = k ), then

F (x, y) = g0(x) + g1(x)y + g2(x)y2 + · · ·+ gk(x)yk

for some g0, g1, . . . , gk ∈ F[x], so rankF ≤ k + 1. Since a similar argument works for

the x-degree of F , we have rankF ≤ min(degx F, degy F ) + 1.

Example 4.2. Let F (x, y) = 1+x+y+xy. Then rank(F ) ≤ 4 since each term in F is

already of the form gi(x)hi(y). Furthermore, we can rewrite F (x, y) = (1+y)+(1+y)x

so that

rank(F ) ≤ min{x-degree, y-degree}+ 1.

In fact, for this example F (x, y) = (1 + y)(1 + x), so rank(F ) = 1. �

19



The following lemma formalizes the concepts in the previous example.

Lemma 4.3. Suppose that F (x, y) has the form (4.1) for some g1, g2, . . . gn ∈ F[x] and

h1, h2, . . . , hn ∈ F[y]. If either {g1, g2, . . . , gn} or {h1, h2, . . . , hn} is linearly depen-

dent, then F (x, y) can be written in the form of (4.1) with n− 1 terms, in particular,

rankF < n.

Proof. Without loss of generality, suppose that gn = a1g1 + · · · + an−1gn−1 for some

a1, a2, . . . , an−1 ∈ F. Then

F (x, y) = g1(x)h∗1(y) + g2(x)h∗2(y) + · · ·+ gn−1(x)h∗n−1(y)

where h∗k(y) = hk(y) + akhn(y) for k = 1, 2, . . . , n− 1.

For a fixed u ∈ F, F (u, y) is an element of F[y] and so the subset of F[y]

spanned by all such polynomials, namely span{F (u, y) | u ∈ F}, is a subspace of F[y].

Similarly, span{F (x, v) | v ∈ F} is a subspace of F[x]. A connection can easily be

drawn between this observation and the notions of the column space and row space

of a matrix. We formalize this connection with the following lemma which serves as

an analogue to Lemma 2.1.

Lemma 4.4.

rankF = dim (span{F (x, y) | x ∈ F}) = dim (span{F (x, y) | y ∈ F})

Proof. Let rankF = n. Then (4.1) holds with {g1, g2, . . . , gn} and {h1, h2, . . . , hn}

both linearly independent, by Lemma 4.3. This implies

dim(span{g1, g2, . . . , gn}) = dim(span{h1, h2, . . . , hn}) = n
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and it suffices to show that span{F (x, y) | y ∈ F} = span{g1(x), g2(x), . . . , gn(x)} and

span{F (x, y) | x ∈ F} = span{h1(y), h2(y), . . . , hn(y)}.

For any y ∈ F, F (x, y) is a linear combination of {g1(x), g2(x), . . . , gn(x)} and

so span{F (x, y) | y ∈ F} ⊆ span{g1(x), g2(x), . . . , gn(x)}. For the opposite inclusion,

since hn = {h1, h2, . . . , hn} is linearly independent, by Lemma 3.5 we can choose

v = {v1, v2, . . . , vn} ⊆ F such that the matrix H = hn(v) is invertible. Then
F (x, v1)
F (x, v2)

...
F (x, vn)

 = H


g1(x)
g2(x)

...
gn(x)


and the equation 

g1(x)
g2(x)

...
gn(x)

 = H−1


F (x, v1)
F (x, v2)

...
F (x, vn)


implies that each g1(x), g2(x), . . . , gn(x) is a linear combination of F (x, v1), . . . , F (x, vn)

and are in span{F (x, y) | y ∈ F}. Thus

span{g1(x), g2(x), . . . , gn(x)} ⊆ span{F (x, y) | y ∈ F}

Similarly

span{F (x, y) | x ∈ F} = span{h1(y), h2(y), . . . , hn(y)}

Definition 4.5. For n ∈ N, F ∈ F(x, y) define

Λn = Λn(x,y) =

∣∣∣∣∣∣∣∣∣∣∣

F (x1, y1) F (x1, y2) F (x1, y3) · · · F (x1, yn)
F (x2, y1) F (x2, y2) F (x2, y3) · · · F (x2, yn)
F (x3, y1) F (x3, y2) F (x3, y3) · · · F (x3, yn)

...
...

...
. . .

...
F (xn, y1) F (xn, y2) F (xn, y3) · · · F (xn, yn)

∣∣∣∣∣∣∣∣∣∣∣
(4.2)

Λn is a polynomial in F[x,y].
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The reader may notice the immediate similarities between Λn ∈ F[x,y] and

Vn ∈ F[x]. Lemma 4.6 shows that the two are related by more than just appear-

ances. In fact, almost every lemma from Chapter 3 regarding the function Vn has an

analogous lemma in Chapter 4 about Λn.

Lemma 4.6. If F (x, y) = g1(x)h1(y) + g2(x)h2(y) + · · · + gn(x)hn(y) for some

g1, g2, . . . , gn ∈ F[x] and h1, h2, . . . , hn ∈ F[y], then Λn = V (gn,x)V (hn,y).

Proof.

V (gn,x)V (hn,y) =

∣∣∣∣∣∣∣∣∣
g1(x1) g2(x1) · · · gn(x1)
g1(x2) g2(x2) · · · gn(x2)

...
...

. . .
...

g1(xn) g2(xn) · · · gn(xn)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
h1(y1) h2(y1) · · · hn(y1)
h1(y2) h2(y2) · · · hn(y2)

...
...

. . .
...

h1(yn) h2(yn) · · · hn(yn)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣


g1(x1) g2(x1) · · · gn(x1)
g1(x2) g2(x2) · · · gn(x2)

...
...

. . .
...

g1(xn) g2(xn) · · · gn(xn)



h1(y1) h1(y2) · · · h1(yn)
h2(y1) h2(y2) · · · h2(yn)

...
...

. . .
...

hn(y1) hn(y2) · · · hn(yn)


∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

F (x1, y1) F (x1, y2) F (x1, y3) · · · F (x1, yn)
F (x2, y1) F (x2, y2) F (x2, y3) · · · F (x2, yn)
F (x3, y1) F (x3, y2) F (x3, y3) · · · F (x3, yn)

...
...

...
. . .

...
F (xn, y1) F (xn, y2) F (xn, y3) · · · F (xn, yn)

∣∣∣∣∣∣∣∣∣∣∣
= Λn

Lemma 4.7. If Λn−1 6= 0 and Λn = 0, then rankF < n.

Proof. We show that F (x, y) = g1(x)h1(y)+· · ·+gn−1(x)hn−1(y) for some g1, . . . , gn−1 ∈

F[x] and h1, . . . , hn−1 ∈ F[y]. Since Λn−1 6= 0, there are un−1 = (u1, u2, . . . , un−1) and

vn−1 = (v1, v2, . . . , vn−1) ∈ Fn−1 such that Λn−1 (un−1,vn−1) ∈ F is nonzero (be-

cause F has characteristic zero). If we expand the determinant defining Λn in (4.2)

along the last column and set x1 = u1, x2 = u2, . . . , xn−1 = un−1, xn = x and
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y1 = v1, y2 = v2, . . . , yn−1 = vn−1, yn = y we get

0 = G1(x)F (u1, y)+G2(x)F (u2, y)+· · ·+Gn−1(x)F (un−1, y)+Λn−1 (un−1,vn−1)F (x, y).

Here G1(x), G2(x), . . . , Gn−1(x) are (n− 1)× (n− 1)-minors of the matrix in which y

does not appear. Since Λn−1(un−1,vn−1) 6= 0, this equation can be solved for F (x, y)

resulting in the claimed form.

Lemma 4.8. Λn = 0 if and only if rankF < n.

Proof. If rankF < n then F (x, y) = g1(x)h1(y) + · · · + gn−1(x)hn−1(y) for some

g1, g2, . . . , gn−1 ∈ F[x] and h1, h2, . . . , hn−1 ∈ F[y]. Hence Λn = 0 follows from

Lemma 4.6 with gn(x) = hn(y) = 0.

If Λ1 = 0 then F (x, y) = 0 and the claim is trivially true. Otherwise we have

Λ1 6= 0 and Λn = 0, so there must be some 1 < k ≤ n such that Λk−1 6= 0 and Λk = 0.

By Lemma 4.7, rankF < k ≤ n.

Lemma 4.9. F ∈ F[x, y] has rank n if and only if (4.1) holds with {g1, g2, . . . , gn}

and {h1, h2, . . . , hn} linearly independent.

Proof. Suppose that rankF = n. Then (4.1) holds for some g1, g2, . . . , gn ∈ F[x] and

h1, h2 . . . , hn ∈ F[y]. By Lemma 4.3, {g1, g2, . . . , gn} and {h1, h2, . . . , hn} must be

linearly independent since otherwise rankF < n.

Now suppose that {g1, g2, . . . , gn} and {h1, h2, . . . , hn} are linearly indepen-

dent. Then, by Lemma 4.6 and Lemma 3.4, Λn 6= 0 and rankF ≥ n by Lemma 4.8.

On the other hand, since F has the form (4.1), we also have rankF ≤ n. Therefore

rankF = n.

We turn our attention towards crafting an analogue of the Wronskian, which
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we call ∆n, in such a way that any lemmas about Wn from Chapter 3 will translate

into near identical lemmas for ∆n.

For i, j ≥ 0, we write ∂ijF =
∂i+jF

∂xi∂yj
. For example, ∂00F = F, ∂10F =

∂F

∂x
, ∂11F =

∂2F

∂x∂y
, etc.

Definition 4.10. Let ∆n be the determinant of the matrix of partial derivatives of

F:

∆n = ∆n(x, y) =

∣∣∣∣∣∣∣∣∣
∂00F ∂01F ∂02F · · · ∂0,n−1F
∂10F ∂11F ∂12F · · · ∂1,n−1F

...
...

...
. . .

...
∂n−1,0F ∂n−1,1F ∂n−1,2F · · · ∂n−1,n−1F

∣∣∣∣∣∣∣∣∣
Then ∆n is a polynomial in F[x, y].

The reader may recall that in the introduction we discussed a connection,

revealed by Lemma 3.12, between the Wronskian and the alternant of a set of poly-

nomials. So far, we have generalized the alternant Vn, to an operator Λn that acts

on a two variable polynomial. Now we will show that ∆n is an operator on a two

variable polynomial that fits the role of our generalized Wronskian. We do this by

first showing that it has a similar connection with Λn as the Wronskian had with the

alternant, an analogue of Lemma 3.12.

Lemma 4.11.

∆n =
(δ(1, 2, . . . , n))2 Λn

δ(x)δ(y)

∣∣∣∣∣x1=x2=···=xn=x
y1=y2=···=yn=y

Proof. Let f1 = ∂00F, f2 = ∂01F, . . . , fn = ∂0,n−1F ∈ F(y)[x] and g1 = f1(x1, y), g2 =

f1(x2, y), . . . , gn = f1(xn, y) ∈ F(x1, x2, . . . , xn)[y]. So each fj is a polynomial with

indeterminant x and each gi is a polynomial with indeterminant y. Then taking
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derivatives of fj with respect to x we get
di

dxi
fj = ∂i,j−1F . So we can write

∆n = W (f1, f2, . . . , fn)

Using Lemma 3.12 we get

∆n = W (fn) =
δ(1, 2, . . . , n)

δ(x)

∣∣∣∣∣∣∣
f1(x1) f2(x1) · · · fn(x1)

...
...

. . .
...

f1(xn) f2(xn) · · · fn(xn)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1=x2=···=xn=x

Notice that fj(xi) =
dj−1

dyj−1
f1(xi) =

dj−1

dyj−1
gi. So we can write

δ(1, 2, . . . , n)

δ(x)

∣∣∣∣∣∣∣
f1(x1) f2(x1) · · · fn(x1)

...
...

. . .
...

f1(xn) f2(xn) · · · fn(xn)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x1=x2=···=xn=x

=
δ(1, 2, . . . , n)

δ(x)
W (g1, g2, . . . , gn)

∣∣∣∣
x1=x2=...=xn=x

Using Lemma 3.12 again we get

∆n =
δ(1, 2, . . . , n)

δ(x)
W (g1, g2, . . . , gn)

∣∣∣∣
x1=x2=...=xn=x

=
(δ(1, 2, . . . , n))2

δ(x)δ(y)

∣∣∣∣∣∣∣
f1(x1, y1) f1(x2, y1) · · · f1(xn, y1)

...
...

. . .
...

f1(x1, yn) f1(x2, yn) · · · f1(xn, yn)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣x1=x2=···=xn=x
y1=y2=···=yn=y

=
(δ(1, 2, . . . , n))2 Λn

δ(x)δ(y)

∣∣∣∣∣x1=x2=···=xn=x
y1=y2=···=yn=y

Lemma 4.12. If

F (x, y) = g1(x)h1(y) + g2(x)h2(y) + · · ·+ gn(x)hn(y)

for some g1, g2, . . . , gn ∈ F[x] and h1, h2, . . . , hn ∈ F[y], then

∆n = W (gn, x)W (hn, y)
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Proof. By Lemma 4.6, Λn = V (gn,x)V (hn,y). Combining this with Lemma 4.11

and Lemma 3.12 gives the desired result.

Lemma 4.13. If rankF = n, then ∆n 6= 0.

Proof. By Lemma 4.9, (4.1) holds with {g1, g2, . . . , gn} and {h1, h2, . . . hn} linearly

independent. Because of Lemma 3.9 we have W (gn, x) 6= 0 and W (hn, y) 6= 0. So,

by Lemma 4.12, ∆n 6= 0.

Lemma 4.14. ∆n = 0 if and only if rankF < n.

Proof. If rankF < n then

F (x, y) = g1(x)h1(y) + · · ·+ gn−1(x)hn−1(y)

for some g1, g2, . . . , gn−1 ∈ F [x] and h1, h2, . . . , hn−1 ∈ F[y]. Hence ∆n = 0 follows

from Lemma 4.12 with gn = hn = 0.

Now assume ∆n = 0. Then let fi = ∂0,i−1F ∈ F(y)[x]. Then W (f1, . . . , fn) =

∆n = 0. Since F(y) is a field of characteristic zero, by Lemma 3.9 we know that

{f1, f2, . . . , fn} is linearly dependent over F(y). So ∆m = W (f1, . . . , fn, . . . , fm) = 0

for all m ≥ n. Thus, by Lemma 4.13, rankF 6= m for any m ≥ n. Therefore

rankF < n.
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CHAPTER 5

Implications for Matrices

Let F(m+1)×(n+1) be the vector space of all (m + 1) × (n + 1) matrices with

entries in F. Let

M =


a00 a01 · · · a0n
a10 a11 · · · a1n
...

...
. . .

...
am0 am1 · · · amn

 ∈ F(m+1)×(n+1)

and define a linear function T : F(m+1)×(n+1) → F[x, y] by

T (M) = F (x, y) =
m∑
i=0

n∑
j=0

aijx
iyj.

The following example illustrates this mapping.

Example 5.1.

Let M =


2 0 1 −1 0
1 2 1 0 1
−3 3 0 2 2
1 −4 1 −2 −1


Then T (M) = F (x, y) = 2 + 0y + 1y2 − 1y3 + 0y4

+ 1x+ 2xy + 1xy2 + 0xy3 + 1xy4

− 3x2 + 3x2y + 0x2y2 + 2x2y3 + 2x2y4

+ 1x3 − 4x3y + 1x3y2 − 2x3y3 − 1x3y4 �

Lemma 5.2. For all A =
[
ai
]
∈ F(m+1)×1, B =

[
bj
]
∈ F1×(n+1)

T (AB) = T (A)T (B)

Proof. Notice that because of the size of A and B, their product is very easy to work

with and we have

T (AB) = T
([
aibj
])

=
m∑
i=0

n∑
j=0

aibjx
iyj =

m∑
i=0

aix
i

n∑
j=0

bjy
j = T (A)T (B)
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The reader should observe that in the lemma above, T (A) ∈ F[x] and T (B) ∈

F[y]. Recall that, by Theorem 2.2, we can decompose any rank k matrix M into a

sum of k rank 1 matrices, Ci, which can each be written as a product of a column

vector Ai and a row vector Bi. Then, using the linear properties of T , Lemma 5.2

gives us

T (M) = T

(
k∑

i=1

Ci

)
=

k∑
i=1

T (Ci) =
k∑

i=1

T (AiBi) =
k∑

i=1

T (Ai)T (Bi).

Theorem 5.3. With M , F (x, y) = T (M), Λn and ∆n as above, the following are

equivalent:

(1) rankM < n.

(2) M can be written as a sum of n− 1 rank one matrices.

(3) rankF < n.

(4) F (x, y) = g1(x)h1(y)+g2(x)h2(y)+· · ·+gn−1(x)hn−1(y) for some g1, g2, . . . , gn−1 ∈

F[x] and h1, h2, . . . , hn−1 ∈ F[y].

(5) Λn = 0.

(6) ∆n = 0.

Proof. Theorem 2.2 shows that (1) holds if and only if (2) does. We have (2) if and

only if (4) by Theorem 2.2 and Lemma 5.2. Item (3) is equivalent to (4) by definition.

Lemma 4.8 gives us (3) if and only if (5). Then Lemma 4.14 says (3) holds if and

only if (6) does.

Corollary 5.4. Let M ∈ F(m+1)×(n+1) and F (x, y) = T (M) as defined above. Then

The following are equivalent:
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(1) rankM = n.

(2) rankF = n.

(3) Λn 6= 0 and Λn+1 = 0.

(4) ∆n 6= 0 and ∆n+1 = 0.

Now that Corollary 5.4 has been established the reader may be wondering

why this is important to us. To answer that question we refer the reader to an article

by Winfried Bruns and Roland Schwänzl titled “The Number of Equations Defining

a Determinantal Variety”[13]. Algebraic varieties are the central object of study in

algebraic geometry, and so the content of Bruns and Schwänzl’s article is beyond the

scope of this thesis. In simple terms, their article proves that there are mn − t2 + 1

equations that can be checked to determine if an m×n matrix M , with entries in an

algebraically closed field F, has rankM < t. They also show that this is the minimum

number of equations with this property.

Let’s look at an example below to illustrate this idea.

Example 5.5. Consider the 4× 6 matrix M = [aij],

M =


1 0 −1 0 4 −3
0 2 −2 1 0 5
1 1 1 0 0 −4
3 1 2 −2 −1 −3


Determining if rankM = 0 is equivalent to determining if rank < 1, which Bruns and

Schwänzl’s article tells us requires no less than 4(6)−12+1 = 24 equations. We know

that a matrix has rank zero if and only if every entry is zero, and so in this case it is

easy to see that the 24 equations needed are aij = 0 for all i and j.
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In general, the mn − t2 + 1 equations described by Bruns and Schwänzl are

complicated and involve combinations of minors of different sizes. We wish to find

simple equations that we can use to determine the rank of M , and recall that if we

wish to know whether or not rank < 2 then we could always calculate all the (2× 2)

minors of M and check if they are all zero. But there are
(
4
2

)(
6
2

)
= 90 (2× 2) minors

here, and we only need at most 4(6)− 22 + 1 = 21 equations to answer this question.

So one may wonder whether this new method of calculating matrix rank using

the ideas introduced in Chapter 4, hereafter known as the ∆ method, is an improve-

ment or not. In fact, we show now that the ∆ method of calculating matrix rank falls

directly between using Bruns and Schwänzl’s equations and calculating the minors

of the matrix, both in terms of the number of equations and the complexity of the

equations.

Recall that a matrix M has rank < t if and only if ∆t = 0, where ∆t is

calculated using the polynomial T (M). Since ∆t ∈ F[x, y] is a polynomial, this

corresponds to checking if each of the coefficients of ∆t are zero. Our next lemma

tells us exactly how many coefficients there are to calculate.

Lemma 5.6. Let F (x, y) ∈ F[x, y] with degx(F ) = mx and degy(F ) = my. Then:

(1) degx(∆t) ≤ mxt− t2 + t and degy(∆t) ≤ myt− t2 + t.

(2) ∆t has at most (mxt− t2 + t+ 1)(myt− t2 + t+ 1) coefficients.

Proof. (1) Let f1(x) = F, f2(x) = Fy, f3(x) = Fyy, . . . , fn(x) =
∂tF

∂yt−1
∈ F[y][x].

Then degx(fi) ≤ mx for all i = 1, . . . , t and ∆t = Wt(f1(x), f2(x), . . . , ft(x)).

So degx(∆t) = degx(Wt(f1, f2, . . . , ft) ≤ mxt− t2 + t by Lemma 3.12.

30



Similarly, by setting gi(y) =
∂tF

∂xt−1
∈ F[x][y], we have

degy(∆t) = degy(Wt(g1, g2, . . . , gt) ≤ myt− t2 + t.

(2) Each term in ∆t is of the form axiyj where a ∈ F, 0 ≤ i ≤ mxt − t2 + t, and

0 ≤ j ≤ myt− t2 + t. So there are at most (mxt− t2 + t+ 1)(myt− t2 + t+ 1)

coefficients in ∆t.

The comparison between the number of coefficients in ∆t and the number of

(t× t)-minors of an m× n matrix M is not immediately obvious, so the next lemma

makes it clear.

Lemma 5.7. Let m,n, t ∈ Z with 0 < t ≤ m ≤ n. Then

mn− t2 + 1 ≤ (mt− t2 + 1)(nt− t2 + 1) ≤
(
m

t

)(
n

t

)

.

Proof. For t = 1 equality is obvious throughout. So let t > 1.

First we focus on the inequality (mt− t2 + 1)(nt− t2 + 1) ≤
(
m
t

)(
n
t

)
. We show(

m
t

)
≥ t(m − t) + 1. Fix m > 1 ∈ Z and notice that the symmetry, t ←→ m − t, in

the binomial coefficient on the left side as well as the product on the right implies

that we only need to consider the case 2t ≤ m. We can write

(
m

t

)
=

(m)(m− 1)(m− 2) · · · (m− t+ 1)

(1)(2)(3) · · · (t)
(5.1)

and notice that 2t ≤ m implies t ≤ m−t+1. Since the numerator and the denominator

of the right side of (5.1) have the same number of factors, and 1 ≤ (m− t+ 1) + d

(t)− d

for all d ≥ 0, we can drop all but the first two factors of the numerator and the
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denominator and get a strict inequality

(
m

t

)
>

(m)(m− 1)

(1)(2)
.

Then by the assumption that t ≤ m

2
and the fact that m− 1 > m− t, we get

(
m

t

)
> t(m− t).

Because these are both integer values we can add one on the right side and get the

desired result.

Similarly
(
n
t

)
≥ t(n− t) + 1 for all t > 1 ∈ Z. Therefore

(mt− t2 + 1)(nt− t2 + 1) ≤
(
m

t

)(
n

t

)

Now we show mn − t2 + 1 ≤ (mt − t2 + 1)(nt − t2 + 1). Notice that for

1 < t ≤ m ≤ n we have 1− t2 < 0, t− n ≤ 0, m− t ≥ 0. So

0 ≤ (1− t2)(t− n)(m− t) = mt− t2 −mn+ nt−mt3 + t4 +mnt2 − nt3.

Adding mn− t2 + 1 to both sides of the inequality gives us

mn− t2 + 1 ≤ mt− 2t2 + nt−mt3 + t4 +mnt2− nt3 + 1 = (mt− t2 + 1)(nt− t2 + 1)

as desired.

The number (mt− t2 + 1)(nt− t2 + 1) in Lemma 5.7 may seem smaller than

(myt− t2 + t+1)(mxt− t2 + t+1) in Lemma 5.6. However, if we have F (x, y) = T (M)

for some m× n matrix M then mx ≤ m− 1 and my ≤ n− 1, so a quick substitution

reveals that actually (mt− t2 + 1)(nt− t2 + 1) ≥ (myt− t2 + t+ 1)(mxt− t2 + t+ 1).

This shows that the number of equations needed to determine if an m × n matrix
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m=1 m=2 m=3 m=4 m=5
t=1 10-10-10 20-20-20 30-30-30 40-40-40 50-50-50
t=2 0 17-17-45 27-51-135 37-85-270 47-119-450
t=3 0 0 22-22-120 32-88-480 42-154-1200
t=4 0 0 0 25-25-210 35-125-1050
t=5 0 0 0 0 26-26-252
t=6 0 0 0 0 0
t=7 0 0 0 0 0
t=8 0 0 0 0 0
t=9 0 0 0 0 0
t=10 0 0 0 0 0

m=6 m=7 m=8 m=9 m=10
t=1 60-60-60 70-70-70 80-80-80 90-90-90 100-100-100
t=2 57-153-675 67-187-945 77-221-1260 87-255-1620 97-289-2025
t=3 52-220-2400 62-286-4200 72-352-6720 82-418-10080 92-484-14400
t=4 45-225-3150 55-325-7350 65-425-14700 75-525-26460 85-625-44100
t=5 36-156-1512 46-286-5292 56-416-14112 66-546-31752 76-676-63504
t=6 25-25-210 35-175-1470 45-325-5880 55-475-17640 65-625-44100
t=7 0 22-22-120 32-176-960 42-330-4320 52-484-14400
t=8 0 0 17-17-45 27-153-405 37-289-2025
t=9 0 0 0 10-10-10 20-100-100
t=10 0 0 0 0 1-1-1

Table 5.1: The number of equations needed to calculate matrix rank using different

methods

M has rank < t, using the ∆ method, is bounded below by the number of equations

defined by Bruns and Schwänzl, and bounded above the number of minors of M .

The following table demonstrates the number of equations needed to check if an

m×10 matrix has rank less than t. Each cell of the table has three numbers, a−b−c,

which correspond to the minimum number as described by Bruns and Schwänzl, the

number of coefficients in ∆t, and the number of t× t minors respectively.
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Some things worth pointing out in Table 5.1 are that for t = 1 all three methods

require the same number of equations. This corresponds to simply checking if every

entry of the matrix is zero. Also, along the diagonal t = m we have equality between

the number of coefficients in ∆t and the minimun number of equations necessary.

∆m is equivalent to mapping the m rows of the matrix into polynomials and then

calculating the Wronskian of those polynomials as was described in the introduction

of this thesis. Notice how both the minimum number of equations needed and the

number of coefficients of ∆t grow linearly with m, but the number of t × t minors

grows much more rapidly suggesting that there may be significant computational

advantages to using the ∆t method in practice.

34



REFERENCES
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