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ABSTRACT
The Separation of Variables Method for Second Order
Linear Partial Differential Equations
By
Jorge Dimas Granados Del Cid
This thesis provides an overview of various partial differential equations, in-
cluding their applications, classifications, and methods of solving them. We show the
reduction (change of variables process) of an elliptic equation to the Laplace equa-
tion (with lower order terms), as well as other cases. We derive the solutions of some
partial differential equations of 2nd order using the method of separation of variables.
The derivation includes various boundary conditions: Dirichlet, Neumann,
mixed, periodic and Robin. A discussion of the eigenvalues related to various bound-
ary conditions is provided. A discussion of Fourier series, as they apply to computing
the coefficients of the series solutions, is included. The thesis concludes with a pre-

sentation of open problems related to the topic.
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CHAPTER 1
Introduction
A partial differential equation (PDE) is an equality composed of mathematical
entities that include an unidentified, multivariable function and its partial derivatives.
Definition 1.1. A partial derivative is the derivative with respect to one variable of
a function of several variables, with the remaining variables treated as constants.

For instance, the partial derivative of u with respect to x is

h ce) = .
lim u<x + 7y7 Z? ) u(ng y? Z? )
h—0 h
These partial derivatives of u, with respect to independent variables such as z, v,

t..., are written as
ul‘a 7ux$a 7ua:ya 7u$1‘x"' (10]‘)
or
0 0? 0? 0?
—u, u, u, Uy ...
ox ox? Jyox ox3
we write

82

o = () = Gy

to indicate that the partial with respect to x is taken first.

If we have a function of one variable, say x, then the only partial derivative of
f(z), g_x is just the derivative f'(x) and equations involving functions of one variable
and their derivatives are called ordinary differential equations (ODESs).

Some example of PDEs are

Uy + tutt = t2 (102&)



Uy — kU, = cost (1.0.2b)

Uy — gy + f (2,1) =0 (1.0.2¢)
U + Uy + Upgy = 0 (1.0.2d)
Uz (T,Y) + Uyy (2, y) =0, (1.0.2e)
g (2,8) = Ugy (2,8) — u° (2,1, (1.0.2f)
ug (z,t) + (27 + %) uy (2,1) =0, (1.0.2¢)

Definition 1.2. The order of an ODE, or a PDE equation is the maximal number of
derivatives (or partial derivatives, respectively) taken with respect to the independent
variable(s).

Equation (1.0.2a), is of second order because u has been differentiated twice
with respect to ¢; equation (1.0.2d) has three x as subscripts, indicating a PDE of
third order, and in (1.0.2g), the first u has been differentiated just once, and so has
the second wu; this is a PD equation of first order.

We now define what it means for a differential operator L to be linear.

Definition 1.3. L is linear if for any fucntions u and v and constant ¢ we have

L(u+v)=Lu+ Lv & L(cu) = cLu

We show examples of linearity and non-linearity of the following PDEs in a
slightly different way; we examine the factorization of the differential operator L and

u in the following equations,

Uy +uy = 0 transport (1.0.3a)



Uy — Yty =0 transport (1.0.3b)
Uy + utty = 0 shock wave (1.0.3c)
We will write these equations in the form Lu = u, + u, . If we can factor out

u completely from a differential operator L; that is, separate L from v with no u in

L, then L is linear. We show this with equations (1.0.3a), (1.0.3b) and (1.0.3c)

Lu=u, +u, = (% + (%) u (1.0.4a)
Lu=u, —yu, = (% - y(%) u (1.0.4Db)
Lu = uy + uu, = (% + u%) u (1.0.4c)

The differential operator in (1.0.4a) is linear because there is no u in it; that is, no u
in the differential operator (a% + a%); in (1.0.4b), the y in the differential operator
makes no difference, so u, — yu, is linear. And equation (1.0.4c) is not linear because
there is a u in the differential operator after factoring.

Here are some operations that give nonlinear operators: u?, u3, ul ..., NS
In(u), sin(u), cos(u),..., etc.

Using the definition of linearity we show Lu = wu, + w, is linear. For dependent

functions v and v and ¢ constant, we have

L(u+v) = (u+v), + (u+0),
= Uz + Uz + Uy + Uy
= (uy + uy) + (vy +vy)

= Lu + L,



and

L(cu) = (cu)y + (cu)y = cuy + cuy = c(uy + uy) = cL(u)

this proves linearity of Lu = u, + u,.
Consider this nonlinear differential expression Lu = u, + u, + 1, then for dependent
functions v and v,

Liu+v)=(u+v);+ (u+v),+1

=Uy + Uy +uy v, +1
but
Lu+Lv=1uz +uy, +1+v, +v, +1

= Uy + Vp + Uy + Vv, + 2
this means

L(u+v) # Lu+ Luv,

hence, the operator L is nonlinear.
However, given

U — Upe +1 =0
we can move the constant 1 to the right side

Up — Uy = —1,
and think of it as Lu = —1; the left side is linear (u can be factored from the
differential operator L, or we can use the the definition of linearity above), so we
have a linear equation.
Definition 1.4. Suppose L is a linear operator, then we define Lu = g, where g is
a function containing only independent variables such as x,y,z,... (u such as in u,

is not independent), then equation Lu = g 1is called an inhomogeneous equation if



g # 0 and Lu = g is homogeneous if g = 0.

Examples of inhomogeneous (homogeneous) equations are

(coszy?) uy — y?u, = tan (2* + ) (1.0.5a)

Uy — gy + f (2,t) =0,  where  f(x,t) #0 (1.0.5b)
Both equations, (1.0.5a and (1.0.5b) are inhomogeneous, while
Uz (T, Y) + Uyy(z,y) =0

is a homogeneous equation.



CHAPTER 2

Reduction to Canonical Form

v 1l / N uw N
Up 1 £ Ug U
ey T Uplly T Y ugk, Yougmy
Uy = Uy + UpTy Uy = ey + Uyt

Figure 1: Chain rule

This chapter is dedicated to reducing three types of PDEs to their simplest
possible forms, called canonical form. The most general case of second-order linear,

partial differential equation (PDE) in two independent variables is given by

Augy + Bugy + Cuyy + Duy + Euy + Fu=G (2.0.1)

where the coefficients A, B, and C' are functions of x and y and do not vanish
simultaneously...[1, p 57].

The second-order PDE (2.0.1) is classified by way of the discriminant

B? — 4AC

in the following definition

Definition 2.1. The second order linear PDE (2.0.1) is called

hyperbolic, if B* —4AC > 0

parabolic, if B* —4AC =0

elliptic,  if B*—4AC < 0.



Example 2.2.

Uz (2, Y) + Uy (z,y) =0 (2.0.2)
b, (x,y) — uyy(x,y) =0 (2.0.3)
Up — VUge = 0 (2.0.4)

Equation (2.0.2) has coefficients A = 1, B = 0 and C' = 1; this gives B> — 4AC < 0,
therefore, it is of the elliptic PDE type; while (2.0.3) has the discriminant of the form
B? — 4AC > 0, connoting a hyperbolic PDE type; and (2.0.4) is a parabolic type,
because B = 0, C = 0, and the constant v > 0, so the discriminant B? — 4AC = 0.
The second-order PDE, Aug, + Bugy + Cuyy + Duy + Eu, + Fu = G, may
be of one type at a set of points, and another type at some other points; this may
happen if the coefficients contain independent variables such as z, y, ... [2, p.2].

Theorem 2.3. By a linear transformation of the independent variables, the equation

Augy + Bugy + Cuyy + Duy + Euy + Fu=G (2.0.1)

can be reduced (transformed) to one of the three (canonical) forms:

Hyperbolic case: if B2 —4AC > 0, it is reducible to

Uge — Upy + -+ =0,

Parabolic case: if B> —4AC = 0, it is reducible to
Uge + -+ =10,

Elliptic case: if B> — 4AC < 0, it is reducible to
Uge + Upy + -+ = 0.

The dots represent the terms involving v and its first partial derivatives u, and u,



only. We will use the change of variables

§=¢&(z,y), n=n(z,y)

and the chain rule to transform the general equation Au,, + Bug, + Cuyy + Du, +

Eu, 4+ Fu =0 into one of the canonical forms above.

The reason we refer to the equations in Theorem (2.3):

Ugg — Uy + -+ =0,
uff_’_':O?
u§§+um—|—---:0

as canonical forms is that they correspond to particularly simple choices
of the coefficients of the second partial derivatives of w. ...

[1, p. 58].

2.1  Chain rule with respect to change of variables

Reduction of Au,, + Buy, + Cuyy + Duy + Euy, + Fu = G to a canonical
form starts by stating the partial derivatives of u with respect to x and y in terms of
partials of £ and 7. v will be used on the right side when applying the chain rule to

uw(z,y) = v(&(z,y),n(z,y)) to compute the second-order functions u,,, Uy, and wuy,:

Uy = V& + Uyl
(ufl?):r = (Ufgm)x—i_(vnnx)w

Use = Vgeo + Velow + Ven&alle + UneNao + Uyl + Unllue



Uy = ey + vy
(uy)y = (Ufé'y)y + (Unny)y
Uyy = U£££§ + Velyy + Ven&yy + UnemySy + Unn77§ + Uy
(ue), = (vea), + (Uyna),

Usy = Veelaby T Veloy T Ven€ally + Vnellaby + Vyllay + Unyatly
vanishing the first order terms u,, u, (into the dots) we have

Upw = Vgell + 20enEalle + Vs + -+,
Uy = Vee&aly + VenSally + Ven&yla + Upntlatly + -+ -,
Uyy = U£££§ + 20enyny + Unn77§ +o
Multiplying both sides of (2.1.1), (2.1.2), (2.1.3) by A, B, and C we have
Atiae = Vg AL + 2069 ATl + Ugn A + -+,
By = vee BEEy + Vey BEany + ven BEyng + Vpp Bngny + -+ -,

Cuyy = Uﬁﬁcfs + 20, CEymy + Unncng +

(2.1.1)
(2.1.2)

(2.1.3)

(2.1.4)
(2.1.5)

(2.1.6)

We pick the new coefficients, a, b, ¢, by gathering the multiplicative factors accom-

panying vee, ey, vy, in (2.1.4), (2.1.5), (2.1.6)
Vee AL + vee BEEy + vee CE;
= (Afg + fofy + Cé;) Vge
= avg
20y A& + Bugy (Eamy + §y1i) + 206y CEyy

= (2A§x77x + B(gxny + gynx) + Qngny) Ven



= bvgn
Vg AT+ Vg By + Unncnz
= (An + Bneny + Cny)) v,

= CUpy

consequently we have from the transformation £ = £(z,y), n = n(z,y), and chain

rule, new coefficients

0= A + B&&, + CE, (2.1.7)
b=2A&n, + (&ny + &) B + 208, (2.1.8)
c= An? + Bn.n, + CU;- (2.1.9)

So equation Aug, + Bugy, + Cuyy + Du, + Euy + Fu = G becomes
avge + bvgy + cvgy + - =0 (2.1.10)

with the dots representing the first order terms.

The Jacobian of the change of variables, £ = {(z,y) and n = n(z,y), is

9E&n) | & &
6(m,y) e 77?!

= fzny - fyn:v 7é 0

is not singular because

Clearly we should confine our attention to locally one-to-one transforma-
tions whose Jacobians are different than zero....we conclude that the type
of such an [general| equation, A, + Bug, + Cuy, + Duy, + Euy,+ Fu = 0,

can not be altered by a real change of variables [1, p. 60].

10



The following formula multiplies the discriminant of the general PDE formula Au,, +
Bugy, + Cuyy + Duy, + Euy, + Fu = 0, by a positive number, implying that the

transformation does not change its type.
(b)° ~ (dac) = (B® — 4AC) (& — &)’ (2.1.11)

(where (£,1, — §y77m)2 is a positve number) and leaves B? — 4AC unchanged by the

transformation of coordinates.
We prove (2.1.11) by plugging a = A&2 + BEE, + Cfg,
b=2A&Mm, + (&ny + &ne) B +2C¢,n, and ¢ = An? + Bngn, + Cn;. into b* — dac
(b)* — (4ac)
= (B (&y + &) + 246, + 2CEn, )’
—4 (AL + B&,E, + CE) (An2 + Bnany + Cn)

and expanding the right side of (2.1.11) gives

(B2 - 4AC) (fzvny - fynac)Q

= 3255775 - 2BQ€x£ynxny + 8255772 - 4AC£§772 + 8AC€m€ynmny - 41405;773;

The two sides of (2.1.11) are the same. O

2.2 Hyperbolic reduction

We begin the reduction of avge + bvg, + cv,y, - -+ = 0 to an equation of one of

the canonical forms by taking coefficients a and ¢ as polynomials and then complete

11



the square to find the roots, this will make coefficients a and ¢ zero and the reduction

will result in a hyperbolic type PDE. We proceed in the fallowing manner; take both
a = Afg% + fofy + Céz = 07 c= Ani + anny + 0775 = 07
and divide each by & and 7. respectively, resulting in
A(f—x> +B(§x)+(]=0, A(@> +B(77r>+020
&y &y Tly Ty
We find the roots completing the square
(5 0(2) e
&y &y
(0105~
&y &y
€ B
<5y 3 24

& B 1 1420
A
e, T2 \/4A2< A

2
§_$_|_£::|:L <BQ_4AC)

&, 24 24 A
& B 1
& B 1
e~ 2aTaav B0



&  —B+./(B2—1A0)
& 2A

we have the two roots

& and one root for 2=

pick one root for :
y My

§e  —B—/(B?—-4AC) N. —B++/(B*—4AC)
&y - 24 Ty B 24 '

The total derivative of £ is

d§ = &edx + &ydy = 0,

along the coordinate line £(z,y) = constant. The total derivative re-introduces orig-

inal variables y and x by way of dy and dx by rearranging

. dy £a
d§ = &pdx + &ydy = 0 into i —g.

Similarly for n(x,y) = constant we have

@ n
dx Ny

Replacing S—I and 2 above, we get
y Ty

dy —B—+/B2—4AC dy —B++VB?>—4AC (2.21)
dv 2A ’ dr 24 ‘ o

Solving for dy in both equations we have

B+ vB? —4AC B —+V/B? —4AC

and integrate, making sure to add the constant of integration:

B+ +vB? —4AC B —VB?—-4AC

y= 2A T y= 2A

T + Co.

13



We solve for ¢; and ¢

B+ +vB? - 4AC B —+/B?—4AC
it =Y — 24 z, Co =Y — 24 L

and the change of variables gives

B+ VB2 —-4AC B —+/B? —4AC
§=y— o7 T, n=y-— 7 T

Taking partial derivatives of & and 1 with respect to x and y gives

B+ +VB? - 4AC B —+\/B? - 4AC
émz_ ) Ne = — )
2A 2A
& =1, ny = 1.

The Jacobian gives:

oa&m) | & & ‘__1 —
e~ | |7 S VB?—1AC £ 0,

Plug these partial derivatives, &, &,, 72, 7y, into the coefficients a, b, and c of

avee + bugy + cvpy -+ -,

to get:

a = A& + B&E, + O

:A(_L (me)f

oA
+B (—QLA (B + VBT 4AC)) (1) +C (1)
e a1 p
= 5B = C+ 5 BVF —1AC+C
1 1
B~ BVBT _dA
2A” T 24 ¢

14



=0

this gives a = 0. Now for ¢

c= An? + Bn.n, + C’nf,

_C+—( \/W>

4A
1
- _ 2 _
2AB< VB 4AC>
=C + ﬁB2 C — —B\/BQ 4AC

—B\/BQ —4AC — —B2
T2 C-3a

= O7
this gives ¢ = 0. And last,

o (_B + VBT = 4AC’) (_B — VBT 4AC)

2A 2A
B++B?—-4AC B —+B?—-4AC
+B | — - +2C
2A 2A
1
= 20— = (B*-24A
¢ -1 (52 —240)
1
The left side of avge + bug, + cvyy, - - - = 0 is reduced to

O'U&_%(32_4AO)U€W+O'UW?7+
= ——(B2—4AC’)U§7,+0+-~

S (82 — 4AC) Ven + -+ as needed

15



Therefore, for A # 0,

ey + -+ =0 (2.2.2)

is in (hyperbolic type) canonical form.

2.3 2" Hyperbolic Case
We need avge + bvg, + cvpy + - = 0 reduced to the form
Vgg — Uppy + -+ - = 0.
Factor 0 = vee — vy,

(90 90
_(8_58_5_8_778_77>U

(90 90 00 90y,
\OLOE OO OEOn  Onon

NECAYEINCAN
S \o¢ on)\o¢  om)
this gives the gneneral solution for vee — vy, = 0O:

v(&,n) = f(E+n)+ g —n).

Let a =& +1n, and 8 = £ — 1, and solve the system for £ and 7

§+n = «
5_77 - 67
then we have
(_Bta _a=8
- 2 9 77— 2 9

16



take partial derivatives of n and ¢ with respect to o and 3

1 1
&y = 3 and &g = B
1 1
Ne = 5 and 73 = b
The Jacobian gives
) 1
€n _| & & ‘: )

8(04,6) Nao T3 2

State partial derivatives of u with respect to a and 3, in terms of partial derivatives

with respect to £ and 7 of u(«, 8) = v({(, n),n(«, 5)). By the chain rule

Uo = Uéga + UnTa
(ua>ﬁ = (U£€a>ﬁ + (Unna)ﬁ
Uap = Vgebalp + Vebas + Venbatls + Vnellals + Viyllatls + UyTlas

Uap = Veeladp F VenSalls + Unglladp + Upyllalls + -+

plugging partial derivatives: &, = %, §g = % and 7, = %, ng = —%, we have
11 L 1 1 n 11 n 1 1 n
Uog = Vegem =+ |Vegp= - | —= Upe= = | +Upp= | —=
B 133 2 9 &n 2 9 ng 2 9 nm 92 2
— e+ (0] = tup+
= 4”052 4Un2
= Vg —Upypt -
= 0.
Then, wve — vyy +--- =0 is a linear, hyperbolic PDE in canonical form.

17



2.4 Parabolic Reduction

Now we reduce avee + bvgy + cvpy -+ = 0 to a parabolic PDE in canonical

form; this implies a and b or ¢ and b must be zero, and B? — 4AC = 0. We set
a= A+ BEE, +CE =0

and divide both sides of it by & and get

A(g—z) +B (g—y) +C=0. (2.4.1)

For &(z,y) = constant, the total derivative is

d§ = &xdx + §ydy =0,

and gives

Sy

—&pdr = &,d =
éx gyy — gy dm

and modifies (2.4.1)

2 2
A<§—:) +B(§—§>—|—C=O becomes A<Z—Z) _B<%)+C:0

and the quadratic formula gives one number since we must have B2 — 4AC = 0; so,

let
dy B£V0 B

dr 24 247

dy B .
_ = 1
0 o =5 eives



cT = —ﬁx
B
= = Y

and b gives

0=0b = 24&m. + B (gxny + fynx) +2C8,n,

= 2A€—xnm + B (g—xny + m) +2C'n,
&y y

B B
= 24 (—ﬁ) N+ B <(—ﬂ) My + ﬁx) + 2Cn,

2
= —Bn, — —
2

+2Cn,
= —B%p, +4ACy,

= (B*-4AC)n,,

where B? — 4AC = 0, take 7, to be an arbitrary function of (z,y); 7, equals zero
means that 7 is a constant, implying that it can be a function of x; so, letting n = x

gives the change of variables

B
E=y— 24 and n=x.
with partial derivatives
B
53: = _ﬂ and gy =1
N = 1 and ny =10

19



and the Jacobian is not zero:

£ &y
Nz My

= —140. (2.4.2)

The Jacobian is not singular, then the expression a® — ab = (B? — AC)(&:ny — &n)?
holds and “shows that the sign of the discriminant B? — AC remains invariant”

[1, p. 60].

So, we reduce avge + bvg, + cvyy, - - - = 0 to a canonical form of the parabolic type; we
take the partial derivatives of n and £ with respect to x and y and plug them into

each of the coefficients a, b, ¢ as before,

a = AL+ B&E, + O,
b = 2A&n. + B (fxny + gynx) +2C¢,n,,

¢ = An.+ By +Cn,

then we have

20



= 0

¢ = A1+ B(1)(0)+C((0)?* = A.

So the equation avee + bvg, + cvyy, - -+ = 0, reduces to Av,,--- =0,

a parabolic PDE in canonical form.

2.5 Elliptic Canonical Reduction

The following is the reduction of avee + bvg, + cv,y, - -+ = 0, to an elliptic type
PDE in canonical form — vee + vpy -+ - = 0.
The discriminant in this case should be b? —4ac < 0; so we can set b = 0 and ¢ = a,
or a—c=0.

So, with the coefficients:
a = AL +2B&E, +CE
b = 2A&n. + B (&amy + §yna) +208n,

¢ = An}+2Bn.mn,+Cn,

we have that
a—c = A&+ 2BE,E, + C’é‘; — (Ani + 2Bn,n, + an)

= A(€-n2) +B(&E —namy) +C (£ —12),

21



this gives a “coupled” system; that is, both coordinates ¢ and 7, show up in both

equations,

A (55 - 77926) + B (éxgy - 7]2:”?;) +C (55 - 77;) - 07

and 2A€x77x +B (fxny + fynx) + Qnyny = 0.

In order to“separate” n and &, multiply

by ¢ and add the result to

A (5:% - 779%) + B (gargy - 77m77y> + C (f; - 77@2/) )

giving

A (& +in.)* + B (& + i) (& +iny) + C (& + i) (2.5.1)

Dividing (2.5.1) by (&, + i7,)°, results in

. 2 .
A(émﬂm) +B(£z+%nx)+c
&y +iny &y +iny
: . §o + 0y o
a quadratic equation. Let : = ¢; dividing by A, we get
Ey £ iny

0,

B . C
&+ 0+ =0

this gives the roots:

B B\’ C B\’
¢2+z¢+(ﬂ) :‘T(m)

B 2
<¢+ﬁ)
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5A 5A
B B C
22
o+ 32 A2 A

B 4A2% [ B2 C
¢+ﬂ—i\/m(@—z)

¢+£_i 1 B*  4AC
24 4A2 \ 4A2 A

¢+£ —ii 4A2B2 4420
24 T 24 4 A2 A
B 1
JE— _ 2 _

¢+2A iQA (B2 — 4AQ0)

B 1
— - 2
=~ £ 5 V(B2 —14C)
¢_—Bi (B2 — 4A0)
N 24 '

A PDE of an elliptic type implies that (B* —4AC) < 0, so we have that

B+ ,/(B?—14AC)

¢= 2A
—B+4/—1(4AC — B?)
2A
_ —B=+i/(4AC - B?)
2A ’

o
we have complex roots. Let ¢ = — for one root, and ¢ = & for the other root; so,

Qy y
o, —B+i\/(4AC — B?) Be —B—i\/(4AC - B?)
a, 2A ’ B, 2A ’
: — Oy B
these are complex conjugates. The total derivative replaces — and —:
Qy y

do = a,dr + a,dy = 0
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gives

dx Qy
similarly, for df = ,dx + B,dy = 0, we have
dy _ _Bx
dx By’
then we have
B —iy/(4AC — B?) B+ i\/(4AC — B?)
dy = 54 dz dy = 54 dzx,
integrating both gives
_ B—i\/(4AC - B?) N _ B+iy/(4AC - B?) N
y - 2A x & 9 y - 2A X 02’
and solving for ¢; snf ¢y we get,
B B —i\/(4AC — B?) B B+ i\/(4AC — B?)
L=y o7 x, Co =1 o7 x.

Let ¢c; = a, and ¢ = 8

B=y-—

B+ i\/(4AC — B?)
2A

z, (2.5.2)

to find what is @ and f in terms of n and £ we again do the factoring:

82
Vge + Upy = (_‘{’T

0 0

& On

)

§+

090 99\,
0£dn  Ondn
0



IR AV
N (8_€+8_n) (8_5_8_n)v’

this gives the general solution,

u(&,n) = f(§+n)+g9(§—mn).

It follows that the (complex) characteristic coordinates are

a =&+, and B =¢&—1in,

solving for n and &, we have

1 1 1 1
&= 3¢ + §ﬁ and n= 52’6 — 52’04.
The equations found above:
B B —i\/(4AC — B?) = B +iy/(4AC — B?)
“=v 24 o - 2A
1 1
give E=y——Bxr and n=—xV4AC — B2
2A 2A
Taking partial derivatives of ¢& and 1 we have
¢ 1 2
ny, = 0, Te =54 AC — B2,
1
& = _ﬁB’ & = 1.

The Jacobian gives

8(5777)_ 650 Sy ‘__L,/ _ R2
a({t,y>_ Ne Ty 24 AC =B #£0.

Now plug these numbers into

avee + bugy + cvpyy -+ = 0.
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We have a = ¢, and need b equal to zero,

1 1 1

+B(1) (i*/‘w - 32) +20(1) (0)

= —iB\/AC’ — B2+ iB\/AC — B?

=0
and since we set a = ¢, we get

0 = avee +0-ve +avy,:--

= a(vege +vgy) -,

this implies that 0 = vge + vy, -+

is a PDE of an elliptic type in canonical form.
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CHAPTER 3

Separation Of Variables

3.1 Examples of second-order PDEs and Boundary Conditions

Some well known examples of PDEs are

Uy = Clgy wave equation
U = Kugy diffusion equation
Upg + Uy = 0 Laplace equation,

(3.1.1)
(3.1.2)

(3.1.3)

where each represent a different type: the wave equation represents ‘hyperbolic’ equa-
tions; while the Laplace equation is an elliptic type of equation, and the heat equa-

tion’s type is parabolic. Some conditions have to be given for the equations above

Because PDEs typically have so many solutions,. .. we single out one so-

lution by imposing auxiliary condition. .. (Strauss, p. 20)

The following are some of the types of boundary conditions.

Definition 3.1. Three well-known boundary conditions are

(a) The Dirichlet boundary conditions
u(0,t) = g(t) and u(l,t) =h(t), where 0<zx<I,
15 used when u is given at the boundary.
(b) The Neumann boundary conditions with the form
u(0,8) = fi(t) and wuy(l,t) = fo(t), where 0<z <lI,
: ou ..
15 used when — 1s given at the boundary.

on
(¢c) The Robin boundary conditions with the form
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Uy — agu = f3(t) at x =0
Uy + agu = fu(t) at v =1

u
18 used when — and w is applied at the boundary.

on

3.2 The characteristic polynomial

Solving a linear, homogeneous, second order ODEs using the characteristic polynomial
method.

We have the equation

aX +bX 4+¢cX =0 (3.2.1)

where X = X (z), with a,b and ¢ constants. We look for a solution X (z) in the form

X =¢€", then

use this to insert into aX" +bX + c¢X = 0, this gives
ar?e™ 4+ bre’™ + ce™ =

and factoring e we have

e (ar2 + br + c) =0,

which gives the characteristic polynomial
ar® +br +c = 0. (3.2.2)

The roots of this polynomial are
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—b+/b? — 4dac —b —/b? — 4dac
= y 9 = .

2.
2a 2a (3 3)

1
These roots, (3.2.3), give solution cases for the differential equation
aX +bX +¢X =0 where X(z)=e".

If 7 #ry are two real solution, then X (z) = c1€™* + ce™*;
if 7 =7y the solution has the form X (x) = ¢;e™* + coxe™”

if ryi#7ry & b*—4ac <0 (these are complex roots) the solutions have the form

X (z) = cr e el

By Euler’s formula:

e’ = cosyx + i sinyx,

we get the following:

= ™ [(clem”) + (cze*”x)]

= "¢y (cosyx + isinyx) + co (cosyr — isinyx)]

= " [(¢) cosyx + icy sinyx) + (co cosyxr — icgsinyx)]
= " [(c1 + ) cosyx + (¢ — ¢g) isinyx]

= ™ [C)cosyx + Cysinyz]

where ¢; + co = C1, and (¢1 + )i = Cs. [3, Section 3.4].
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3.3 Dirichlet boundary conditions

We look at the wave equation with Dirichlet boundary conditions:

U = CPug, for 0<z<l (3.3.1)
uw(0,t) = 0 = u(l,t) (3.3.2)
and initial conditions

We look for a solution as a separable function of x and ¢, of the form
u(z,t) = X(x)T(t), (3.3.4)

next is to have X7 = 2X"T be divided by XT

X@)T'(t) AX'T
AXT — 2XT

Y

where A\ > 0 is a constant. So, we get

X"+ XX =0 and T" + AN\T = 0,

where for convenience we let 32 =X and 3 > 0. Then, we have

X"+ 35X =0, and T"+B°T =0.

And by the characteristic method (ar® + br + ¢ = 0) we obtain a = 1, b = 0 and

c = (32, this implies that since r; # ry & 0% —44% < 0, the solution has the form

X (x) = Acos (Bx) + Bsin (fz) ,
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where Kk =0 and v = 8 in e [C} cosyx + Cysinvyx].

Similarly for 7" + ¢?$%*T = 0, with k = 0 and v = ¢f3, we have
T (t) = Ccos (cft) + Dsin (cft).

Using Dirichlet condition w(0,¢) =0 for X on the left we have

0=X(0) = Acos(p0),+Bsin(S0)
= A(1)+ B(0)

this gives A = 0.

So X (x) = Acos(fBz) + Bsin(fz) becomes X(z) = Bsin(fz) and the right

boundary condition, u(l,t) = 0, says
X(1) = Bsin(8l) = 0.

If B =0, then u(z,y) = X(2)T(t) = X(0)T(t) = 0; this is trivial. Instead, we let

: : nm
pl = nm, where nm are zeros (roots) of the sine function; so, f = T and

™

B2 = (?)2 = A, X, (x) = sin <T) (n=1,2,3,...)

For T, there are no boundary conditions so we have that u(z,t) = X (x)7T(t) becomes

+ D, sin 7 T (3.3.5)

nmct nmct nmwr
up(x,t) = (C’ncos z in - )sin z

n is a set of integers from one to infinity and C),, and D, are constants. So, we
have infinitely many solutions because for each n, we have a different u, and we

have infinitely many n values from 1 to co. By the method of superposition, we
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get a sum of solutions as another solution of wy = c*u,, for 0 < z < [ and

u(0,t) =0 = u(l,t):

t t
u(e ) =3 (cn cos "™ 1D, sin T) sin 17

n

(3.3.6)

nmx

and (3.3.6) “solves equations (3.3.1), (3.3.2) and (3.3.3) provided that ¢(z) = Z A, sin -

and (z) = Z ?Bn sin @ ” 4, p. 89

Figure 2: sin(nwz/l) n=1,2,3,4. 0<z <l

3.4 The Heat Equation with Dirichlet Boundaries

The diffusion problem with the Dirichlet boundary condition.

diffusion equation: w; = ku,, (0<z <[, 0 <t < 00)

boundary condition: u(0,t) = u(l,t) =0

initial condition: u(z,0) = ¢(x).
Continuing with the separation of variables method, we have

X A tant
- — — —A = constan
X Y

32
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and, as before, the boundary conditions give for —X" = AX

2
An:<nl> L Xo(@)=sin T (n=1,2,3,...). (3.4.4)
l [
T d
For T' (with — = —1In|T h
or T' (wit T =7 n|T), we have
T/
o:? = —B%
d
—In|T| = —p%
nm 2
In|T,| = _<T> kt + ¢
nm 2
nm 2
—(ZE) et
= A,e <l> )
So, u(x,t) = X (x)T'(t) is now
= 2 nwx
=S4, (/)7 G T 3.4.5
u(z,t) ; e sin — ( )

Note that T, is an exponential function; also note that we have just one initial condi-
tion because the diffusion equation contains only one partial derivative with respect

t. Imposing this initial condition ¢(z), we get the following

(3.4.6)

Example 3.2. Consider waves in a resistant medium that satisfy the problem

gy — TUL

Uy = for 0<x <,
BC:u = 0  at both ends,
IC:u(z,0) = o(z), u(x,0)=1v(x),
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2mc
where 7 is a constant and 0 < r < —. Write down the series expansion of the solu-

l

tion.

Solution: look for

write

w=X@)T (t), wy=X@)T"(t) and g =X"(2)T ().
Writing uy; — g, + ruy = 0, we have
X (@)T"(t)— X ()T (t) +r X (2)T' (t) =0,

and dividing by ¢2X (z) T (t) gives

X(@)T'@) X" ()T () . X (x)T'(t) _ 0
AX ()T () AX ()T (@) AX ()T () X (x)T(t)

then

™)  X"(x) . T (t)
AT () X (z) 2T (t)

=0,
insert —\ and separate

vy Te o Xw)
2T AT Cxwm T

and solving X as before we have:

X" (x2)+ XX () =0 2
(@) (=) :ansinm and A\, = <n7r> .
u = 0 at both ends l

For T we have

1
ST (1) + éT’ () + AT (t) =0,
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and multiplying ¢? on both sides gives:

T" () +rT' (t) + AT (t) = 0.

We use the characteristic equation pu? + rp + Ac? = 0, to find the roots for T’; by the

quadratic formula we get the roots:

nm 2
—r+iT— 42N, —rj:\/r2—4(7) c?
2 B 2

Hn =

2rc
Given that 0 < r < %, we have

_ 2mc 2 ore\®  Ar?c? - 42 c*n? L 93
r< — r — ) = n=123,...,
[ [ 2 - 2z’

SO

R = L4y (—) - —

2 2 l 4
Then,
- =
—— +iw,

T, (t)=e\ 2 , Wherewn:\/ll(?) 02—%

and
(—r + iwn> t
T,(t) = e\ 2
r
_ ol Fiwgt
r
= e 2 (cosw,tEisinw,t).

Hence,

Tt > 2 2
uy (x,t) =e 2 Z (cos wpt + i sin w,t) sin @, where  w,, = \/4 (n_w> ¢ — Ly

2 z z 1

Note: r > 0, so u(z,t) is bounded for large t's.
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3.5 Neumann Boundary Conditions
Separation of variables, starting with X () as previously found for the wave equation:
X(z) = Ccos fz + D sin [z, (3.5.1)
and Neumann boundary conditions,
uz(0,t) = u,(l,t) = 0. (3.5.2)
With the left boundary condition u,(0,t) = 0, we have

0=X(0)
= —Cpsin B0 + Dp cos S0

=0+ Dp(1),

B # 0 for all cases, so D = 0. This gives X (z) = C cosfx.
And for u,(l,t) =0,

0=X'(I) = —BCsin I,

we have 3, = nm/l, since C' = 0 would lead to a trivial solution X (z) = 0. Replacing

fin X (z) = C cos fx gives
X, (x) = C), cos w,
this gives

nmwx

Wz, t)n = Ape” /DR cog l

(3.5.3)

For Dirichlet boundary conditions in last section, it could be shown that A # 0; but

for Neumann’s boundary conditions, A can be zero and A = 0 adds the term, %AO to
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what we have; so now (3.5.3) looks like

1 - 2 nmwy
_ = —(nm/l)*kt
u(z,t) = 2A0 + ; Ape cos ——, (3.5.4)
and zero is be included as an eigenvalue
2
A= = (%) for m=0,1,2,3,.... (3.5.5)

For Neumann BCs in (3.5.4), we have the cosine series in it, instead of the sine series

of Dirichlet BCs. With Neumann’s, now the initial conditions (at ¢t = 0) looks like

nnx

u(z,0) = ¢(z) = %AO + Z A, cos - (3.5.6)
n=1

The cosine series. For Neumann’s boundary conditions, u, (0,t) = u, (I,t), we get

for the diffusion equation’s only initial condition u (z,0) = ¢ (x),

1 oo
o(x) = u(z,0)= §A0 + Z A= (m/PRO) g 07
n=1

1 > nmwx
= 5140"‘;1471(3087.
Example 3.3. Solve the diffusion problem u; = ku,, in 0 < x <[, with the mixed

boundary conditions u (0,t) = u, (I,t) = 0.

Solution: Look for

then X (2)T'(t) = kX" (2)T (1),
L X@TWO kX @T
kX (2)T kX ()T
. Y o X'(z)
VS W T X
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So X" () + AX (z) =0, then if A > 0, we get

X (z) = C cos fx + Dsin fz,
where 5% =\, and 3 > 0.

The boundary condition u (0,¢) = 0 implies X (0)7'(¢t) = 0 for all t = X (0) = 0,

(we do not want u = 0, which would be if T'(t) = 0). So

0= X(0)=Ccosf(0)+ Dsinp(0)
=C+ D(0)
— C =0,

hence, X (z) = Dsin fz.
With w, (I,t) =0, we have X' ()T (t) =0 for all ¢, since T'(t) # 0,

0=X'(l)=pBDcosB(l),
but 8 # 0 and D # 0, then

cos Bl =10

For T,

T (1) + kAT (t) = 0 gives T (t) = Ae FAL,
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Note: there are no negative eigenvalues, for if A < 0, we can write A = 7 (where WLOG ~ > 0),
then
X"(z)+ XX (x) = 0, becomes X" (x) —~*X (z) =0,

so X (z) = Acoshyx + Bsinhvyz,

and the boundaries give:

0=X(0)=A-1+B-0

= A=0,

we get X () = Bsinhvyz.

and 0= X'(l) = Bycosh~yl where B#0,~v#0, | #0,

= cosh~l = 0, but this is not true, cosh x is never zero.

We have a contradiction; that is, there is no negative eigenvalue.

So T, (t) = A e "t
SO ) P A
and u(x,t) = Z Be : sin [ ——2—x
n=0 l
where B,=A, D,

i
y =coshyx

o

Figure 3: cosh~yl # 0
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3.6 The Robin boundary conditions
X —apX =0 atz=0

X4+qyX = 0 atx=1L

where ag and @; are constants. For X (z) = C'cosfx + Dsin Sz with the Robin

boundary condition at x = 0 gives

0 = X'(0)—agX (0)
= —pC'sin B0+ D cos 0 — ag (C cos 0 + D sin S0) ,

= fBD —ao(C)

ap (C)

gives D =
B

similarly, at © =1

0 = X'(0)+aX ()
= —BCsin Bl + BD cos Bl + a; (C cos Sl + Dsin pl)

= —pCsin Bl + BD cos Bl + a;C cos Bl + a; D sin 51

= —pCsinBl+p (#) cos Bl 4+ a;C' cos 5l

+ay (ao éC)) sin 3l

= —pCsin Bl + aoC cos Bl 4 a;C cos Bl +

ajaoC

sin Bl

multiplying by 8 and factoring out C| we get

0 = —/?sin Bl + agB cos Bl + a; 5 cos Bl + aya sin Bl

(2% sin Al — ayag sin Bl = agf cos Bl + a5 cos fl
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(8% — aao) sin Bl = (ag + a;) B cos Bl

(8% — aao) tan Bl = (ag + ;) B cos B,

“Any root 8 > 0 of this "algebraic” equation would give us an eiganvalue \ = 52”7

(Struass, p.94).

If C#0,and D = a0 éC’)’ we get the corrsponding eigenfunction
X (z) = Ccos Bz + % sin fz.
Solving for [ is difficult in
(62 — alao) tan Bl = (ap + a;) 5 cos Bl (3.6.1)

so will use graphing to analyze numerical values of 5. Dividing (3.6.1) by cos 3, we

sin 1

cos gl tan Gl and write (3.6.1) as

get the trigonometric identity

tanﬁl — M

52 — Qo ’

(ao +ar) B
ﬁQ — Qg

and find intersections of tan 3l and , as functions of 5 > 0.

Y

Figure 4: ag > 0,a; > 0, eigenvalues as intersections
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In figure (7), the eigenvalues are between zeros of tan 8l; this, and the inter-
sections show that

2 2

™ ™

n’ (n=0,1,2,3,...). (3.6.2)

Note that in figure (7), when cos 5l = 0, gl = g, and sing =1, (8% — aap)sinfl =

(ao + a) B cos Bl, gives
0 = (B> —aap)sinpl
= (8% — aap)
= B = Vaa,

799

this is when “the tangent function and rational function ’intersect at infinity
[4, p94].

For the case of ay < 0 a; > 0, and ay + a; > 0, the maximum occurs at

(—ap+a;) 5
f? - (—ao)al

the maximum (see Figure (5)). We use the quotient rule for derivatives:

\/|—apa]; this can be shown by finding the critical point where reaches

((—ao + a;) 5)' _ (zao+ @) (B2 + apm) — (—ao + ar) B(25)
5% + agay (B2 + aoal)2

and set the right side to zero, (implies the numerator is zero) and get

(—ao + a;) (52 + aoaz) = (—ag + a;) 28°
= 62 + apa; = 252
= [ =a

= [ =+|aow].
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(—ap +a;)

The intersections of tan 5l = are shown in figure (5),

B2 + a;aq
Uk /Taoal
T”‘“ +— tanpfl —
B4
[y I
~Phar ~ ":?.2
p i .
/ I T~ -ii"
7 : - -? (—CI'.D—G-I).B
," : - "'H-L J ,'3-2+[1[][1I
" I =0 |
/ . I
! |
_'J |
|
}' |
|
/ l '.:'3
! Jvl"'n-‘*r l JI I
! ™ 27 3 dm 5z
; T I ! :
. —ap+a
Figure 5: ap < 0,a; > 0 and ap + a; > 0, tan 8l = _( 20 l>ﬁ‘
B2 + ayag

Example 3.4. Find the eigenvalues graphically for the boundary conditions X (0) =
0, X'(I)+aX(l)=0, for —X"=XX, where A= 32 Assume that a # 0.
Solution: We have

X (z) = Ccosfz+ Dsinfuz,
and 0 = X(0)=C+D((0)=C=0

so X () = Dsinfu.

On the other hand, X' (1) + aX (I) = 0 gives:

0 = pDcospl+ aDsin 5l
= —fDcosfl =aDsinfl
g sinpl
— a cospl
B _
= —— =tanfl.
a
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The intersection of functions —é and tanpl, will give the eigenvalues:
a
Case 1: a>0; so y= —g < 0 : The discontinuities are at § = (n — %) 7/l and the

roots of tan Sl are nw/2, for n =1,2,3,.... We can see that

(=y)m _l%)ﬂ < B < nl_w

'I’L—l ™
and also the graph shows that lim, (ﬁn ) ) = 0.

Figure 6: graph of —g = tan Sl, where a > 0

Case 2: a< 0=y = —éﬁ > 0; so, the graph:

y = tan 3l

Figure 7: graph of —§ = tan fl, where a < 0
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n+ N7
shows that ? < B < @ and (3, — — 0 as nsoo-  So, larger

= o~
N——
[\

2
eigenvalues get closer to 7;—2 (n + 3
Example 3.5. We will use Newton’s Method of iterations to comopute the first

intersections, with f (3) = (tanw) (8* —3.61) —3.88, fi =1, n=1, L=7 and

agp = a; = 1.9, where

o f(Ba)
Bn-i—l - 6 f, (ﬁn>7
B (tanwf3) (B* — 3.61) — 3.80
Pt =0 =2 (tan273 + 1) (8% — 3.61) + (tanwS) 26 — 3.8
By = B (tannf) (5° = 3.61) = 3. 85 — 0.68332163%

7 (tan? 7B + 1) (B — 3.61) + (tanwB3;) 26, — 3.8
(tanﬂ'ﬁg) (ﬁ% - 3. 61) - 3. 862

= By— = 0.740 563 595
by b= (tan® 7B + 1) (B2 — 3.61) + (tan732) 265 — 3.8
(tan33) (55 — 3.61) — 3.833
= B3— = 0.757393 701
b bs =2 (tan?7f5 + 1) (B2 — 3.61) + (tan733) 263 — 3.8
(tanmfB,) (82 — 3.61) — 3.85,
= B1— = (.758 261 759
& & 7 (tan? 8y + 1) (82 — 3.61) + (tan7By) 234 — 3.8
(tan7r65) (ﬁg - 3. 61) - 3. 865
= B5— = 0.758 263 778
Pe b= 2 (tan®7f3s + 1) (B2 — 3.61) + (tan735) 265 — 3.8 ’
Ui
Nal0.as 070 075 020 0.&3 090 .
00— : : > 7
0.5
-1.0

Figure 8: ag=a; =1.9, l = m, 1 =~ 0.758263778
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CHAPTER 4
Eigenvalues
Definition 4.1. X\ is an eigenvalue of a matriz A, if there is a vector v called eigen-

vector, such that

Av = v (4.0.1)

where v # 0.

2
Analogously, for the differential operator o e have that
x

"

X (z) = -AX(2)
= - —X(z) =2X(2),

2
where \ is an eigenvalue of 0 for a nonzero function X (x).
x

4.1 Eigenvalues: Dirichlet Boundary Conditions

The eigenvalues for Dirichlet boundary problems are all positive.

If A =0, then

Derichlet BC 0 = X(0)=D(0)+C
implies cC =0

SO X(z) = Dz
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for X (1) = 0:

[ # 0, so D = 0, therefore zero is not an eigenvalue. For an eigenvalue, A, the

eigen-function X can not be zero.

Negative Eigenvalues?

If \ were negative, we would write it as A\ = —v2, where v > 0; then,

X/I — _ (_72)X — ’72X

Suppose A is negative, then we have two real solutions of the form e, then by

section (3.2), X (x) = ;€7 4 c9e™7* are solutions. For Dirichlet boundary conditions,

X(x) =0, we have

0
this gives -
SO X (x)
at X(I) =0: 0
we have e

taking In:  Ine”
we get ~l

X (0) = 170 4 e ©®
c1 (1) +cx(1)

C2

e — cre "

X (1) = e — ey

c1 (e”l — e‘”l)

e’ —

e

Ine™

this is true if vl = 0, a contradiction; then, the Dirichlet’s boundary conditions does
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not allow negative eigenvalues.

4.2 Eigenvalues: Neumann Boundary Conditions

uz (0,t) = u, (1, t) = 0.
Zero Eigenvalues
If X\ =0, then — X" () = 0 implies X’ (z) = A and X (z) = Az + B; A and B

constants.

left BC X'(0) = A
gives A =0
then X(x) = B
and X' (z) = 0.
righ BC X'(I) = 0
Then X (z) = B is not zero; therefore, for the Neumann’s boundary conditions we

have a zero eigenvalue when —X"” = 0.

Negative Eigenvalues?

Let A be a negative eigenvalue and write A = —+?; by the characteristic polynomial
method
X7 =~ (—%) X = X
implies r=Z7.

We have two real solutions of the form e, so the solution is

X () = 17" 4 coe™ 7.
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at X'(0): 0 = X'(0) =7yc1"? — yepe @

% = = (Cl - 02)
gives —c = ¢y
we have X(z) = & —ce
at X' (1) : 0 = X'()=cay(e"+e)
then e = e
this gives e = 1.

We have a contradiction because e® is never —1 for —oco < & < o0. So we conclude
A = —9? is not a negative eigenvalue when Neumann’s boundary conditions are

applied to the solution u (z,t) = X (z) T ().

4.3 Eigenvalues: The Robin’s Boundary Conditions

For —X"=)X
and X/ (0) — CL(]X (0) = O, X/ (l) + CL()X (l) =0.

Zero Eigenvalues?

If A\=0, then X (z) = C + Dz, and X' (z) = D, so

X' () —apX (£) = D —ay(C+ Dx)

and 0 = X'(0)—apX (0)
implies 0 = D—ay(C+D(0))
= D-— CL()C
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then D = qoC

SO X(x) = CH+(aC)x

and 0 = X'()+aX()

gives = aoC + a; (C + ayCl)
= aoC + a;C + a;aC1

then A =0if and only if 0 = C (ag+ a; + ajaol)

that is, if C' =0 or 0 = ag—+a + aqapl

ifC=0then D=0,= X = 0 notan eigen function
SO 0 = ap + a; + alaol
then  —aqapl = a9+ a;, if and only if A = 0.

Negative Eigenvalues?
Let A = —y? < 0, then \ is negative. This gives —X” = —2X, by the characteristic
polynomial method we have

X (z) = 1" + coe” 7" = Acoshyx 4+ Bsinhvyz,

and X' (0) — apX (0) = 0 gives

0 = Avysinh0y + Brycosh0y — ag (Acosh0 + Bsinh~0)

= 04+ By—aqyA—-0

A
we get B = o2
g
aoA A
SO X () = Acoshyzr+ — sinh~vyx
Y
Then 0 = X'()+aX()
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A
= Avysinh vl 4 agAcoshyl + q, (A coshyz + 9% Ginh ’yl)
Y

%0 = 72 sinh vl + agy cosh vl 4 a;y cosh vl 4+ a;aq sinh yx
(72 + alao) sinhyl = —(ap+ a;)~ycosh~yl
9 sinhyl
(W + alao) cosh 7l N (a0 +ar)y
fanhne = — (ot
Ve + wao

We graph both sides; if there is an intersection, then we will have a negative eigen-

value(s). With ag and a;, both positive:

LY

. _(au + ap) vy
¥? 4+ apay

Figure 9: for ag > 0, a; > 0, no negative eigenvalue

(ag + ag)~

v= 72 + agay

X

y = tan~l

. _(ﬂu + ai)y
¥? + apay

Figure 10: for ay < 0, a; > 0, ag + a; > 0, no negative eigenvalue.
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_(aota)y |
2 + agay y = tan 38l

_ (ap+a)y
7 + aoay

Figure 11: for ay < 0, ag + a1 < —apa;l, one negative eigenvalue where the functions
intersect.
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CHAPTER 5

Coeflicients

5.1 Coefficients in the Case of Dirichlet Boundary Conditions

To find coefficient C,, in (3.3.6) we start by setting (3.3.6) to the initial condi-

tion u(zx,0)

nmwx

6(zr) = u(z,0)= i (cn cos mi O) 1 p, gin T (0)) sin

l

o)

= Z (Cp 4 0) sin e
n=1 l
= Z C, sin nre
l
n=1
This gives ¢ (z Z Cy sin 2 then multiply both sides by sin 2%

from 0 to [ term by term

/Olgb(m)sin

To compute this we use the trigonometric identities

d:v = ZC / sm—sm m;mdx

cos(a—b) = cosacosb+ sinasinb
and cos(a+b) = cosacosb—sinasinb

combine cosines

[

T .
, and integrate

cos(a—b)—cos(a+0b) = cosacosb+sinasinb — (cosacosb — sinasinb)

= cosacosb-+sinasinb — cosacosb -+ sinasinb

= 2sinasind
SO 2sinasinb = cos(a —b) — cos(a+b)

53



1 1
and sinasinb = icos(a—b)—§cos(a—l—b)

Now we find the coefficient; first, we integrate for m # n; and we will need ¢, = n _l mﬂx,
[ l
dfy, = dx, similarly, 6y = n+m7m’ dby = dx
n—m [ n-+m
/ I nTx — mmnx 1 nTr — mmnx
—cos(—— )——cos(——l— >dx
0 2 [ [ 2 [ [
/l 1 n—m 1
= — Cos mr | — = cos mx | dx
0 2 l 2 [
/ll <n—m ) /ll (n—i—m )
= — Cos mx | de — — COS mx | dx
0 2 0 2 l
/l L (01) ! do /l L (62) l de
= — cos — | =cos
02 -m)m T fp 2 T (e m)m
1 l S'n(n—m x)l 1 l Sn<n+m a:)l
= = i T - = i T
2(n—m)m l o 2(n4+m)m 0
s (s ((n - m) 7) — (sin0)) — 3 (sin((n + m) 7)  (sin0))
= - in((n — — (sin0)) — = in — (sin
2(n—m)7rs n—m)m s 2(n+m)7rs n+m)m s
= 0
Integrate when m is fixed and m = n, we will need 03 = # and df; = nl—ﬂdx, SO

l
that —d6f3; = dx is used in substitution at a step of integration; also, we make use
nm
1

of the trigonometric identity sin®z = 5~ 50032x

' nmx . mmx
sin —— sin dx
0

l
!
. o NTX
= sin® ——dx
0
!

)
1/ 2
——/ COS mmdx
2 Jo )

1
0 2
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!
So /
0

!
This gives / ¢ (x)sin
0

the wave gives

"1 "1
= / —dr — L — cos 05d05
0 2

2 nm Jo
1 1
_L gt e
2[ 50= 55~ (sin 2nm — sin 0)
1 11
- ] _0—=_"_(0—
2 0 22n7r(0 0)
1
= -l
2
$in o sin oy = 10’ 1fm7én
[ l 31, ifm=n
!
And / ¢ (x) sin mﬂxdw

= ZC’ /smmsinm;md:c

= C, Z/ sm@sinm;mdx

2mx Mmmx

l
+Cg/ sin —— sin
0 [ [

l
+---+C’m/ sinm;m i
0

Sin

(m+1)nx

mmx

dx

L' onrx
+Chi1 [ sin l sin
0

l

1
=0+0+--+Cp -5 +0+0+--

2

MTL  m=m l

d.T = Cm§,

w (z,t) = Z(—nTmC’nsin

n=1
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nmct

l

=2 [

this is the Fourier coefficient formula for C,,. The other initial condition, u; (z,0) , for

nmwc

l

——D,, cos

da + - -

nmct

sin

mmx

nmx

l

) sin

l

dx



and w (2,0) = ; (_nTwch sin 0 + ?Dn cos 0) sin ”lﬂ

= i ?Dn sin _mlrx
n=1

= nme nwx

_ D, sin —=

SO Y (z) ; i sin —
nme 2 [ mmx
and we get TDn =7 / Y () sin l dx by the same process we got C,,.

0

5.2 Coefficients in the Case of Neumann Boundary Conditions

To find the constant coefficient A,,, we start the series at n = 0, (to include
Ap) and follow the same steps as we did in finding coefficients for Dirichlet’s boundary
nmx nmx

conditions; but now we have cos 7%, instead of sin 7%, so we add the cosine difference

and cosine sum to get the needed trigonometric identity:

then  cos(a —b)+cos(a+b) = cosacosb+sinasinb+ (cosacosb—sinasinb)
= cosacosb+sinasinb+ cosacosb —sinasinb
= 2cosacosb
SO 2cosacosb = cos(a—b)+ cos(a+b)
1 1
and cosacosb = 5 cos (a—b)+§cos (a+0b)

Again, to integrate term by term, we set m # n, and we will get 0, because

mml
multiplying 7 by any integer in sin 5 = sin7Tm = 0, and sin 0 = 0, when computing

the integral

I nTr — mmnx 1 nTr — MmnI
—COS(—— >+§COS<T+ ; )dm:O
0
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and for the other integral, as we did before, we fix m and set it equal to n; plus we

1 2 I 2 1
use the identity cos®’z = = + o8 x’ where -+ €os xdx =—-[+0,
2 2 0 2 2 2
! I
/ sin nrr sin mre der = / cos? wdw
0 ! l 0

1
= -l
2

9
so we get A, 7/ ¢ (x) cos m?xdx where m =0,1,2,....
0

For m =0,1,2,3,..., this is coefficient A,,’s formula for the cosine series

nmx

1 00
§A0 + ;An COS T

Example 5.1. Solve the Diffusion problem with Dirichlet boundary conditions and
initial conditions.
U = kuwx

u(0,t) =0=u(lt)

u(z,0) =1=¢(z)
We know that
> 2 nmwT
1) = An —(nm/U)*kt _: .
u(x,t) ; e sin ——
the initial condition gives
1 = 0) = A e~ (nm/D?k(0) nrx
u (z,0) ; e sin —
= ZA” smw
l
n=1
mmx

2 l
and A, = 7/ ¢ (z)sin dx, is the formula to find A.
0
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ML g = " gr. then —— 0d — dr.
l l mm

!
A, = 2/sin@ieal
L Jo

Letting 0 =

mm
9 l
= ———cos¥
mm 0
2 mrz |
= ——— o8
mm Lo,
= ——cosmmn -+ —,
mm mm
we have cosmm = (—1)", and
4 . .
2 m 2 — if mis odd
—(=-)" 4+ —= mm
mm mm . .
0 if m is even,
so we get
= nmwx = 4 nmwx
1= Ay sin — = — sin —
; sin — ; — sin —
4 . T . 2z . 3mx
= — |sm—+sm— +sm——+--- |.
mm l l l

is an infinite series expansion.

The method of separation of variables is very helpful for solving linear PDEs of
2" order. Hwoever, it has its limitations. For problems with non-constant coefficients
or for those with non-symmetric boundary conditions, the method will not work.

Other methods would have to be explored in those cases.

58



REFERENCES

[1] P. R. Garabedian,: Partial Differential Equations, John Wiley & Sons. Inc, New

York, 2nd edition, 1964.

[2] A. Salih,: Classification of Partial Differential Equations and Canonical Forms.

Internet Source, 2014.

[3] Carlos, A. Smith and W. Campbell, Scott,: A First Course in Differential Equa-
tions: modeling and simulation, CRC Press, Boca Raton FL, John Wiley & Sons.

Inc, New York, 2nd edition, 2011.

[4] W. A. Strauss,: Partial Differential Equations (An introduction), John Wiley &

Sons Ltd., NJ, 2008.

[5] A. Tveito, and R. Winter,: Introduction to Partial Differential Equations: A

Computational Approach, Springer-Verlag, New York,Inc., 1998

59


https:// www.iist.ac.in/sites/default/files/people/ Canonical_form.pdf

	Abstract
	List of Figures
	Introduction
	Reduction to Canonical Form
	Chain rule with respect to change of variables
	Hyperbolic reduction
	2nd Hyperbolic Case
	Parabolic Reduction
	Elliptic Canonical Reduction

	Separation Of Variables
	Examples of second-order PDEs and Boundary Conditions 
	The characteristic polynomial
	Dirichlet boundary conditions
	The Heat Equation with Dirichlet Boundaries
	Neumann Boundary Conditions
	The Robin boundary conditions

	Eigenvalues
	Eigenvalues: Dirichlet Boundary Conditions
	Eigenvalues: Neumann Boundary Conditions
	Eigenvalues: The Robin's Boundary Conditions

	Coefficients
	Coefficients in the Case of Dirichlet Boundary Conditions
	Coefficients in the Case of Neumann Boundary Conditions



