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ABSTRACT

Lower Bounds On The Orders Of The Terms

Of The Derived Series Of Finite 2-groups Of Derived Length 3

By

Ezekiel D. Golvin

Let G be a finite group with derived length three, such that the number of

elements in G is a power of 2, and G, G′, and G′′ form the derived (commutator

subgroup) series of G, where G′′′ is the trivial group. Let the order of G/G′ be 2a,

and the order of G′/G′′ be 2b. Then, a ≥ 3 and b ≥ 3. This result comes from the

work of P. Hall and D. Gorenstein. In a companion thesis [1], A. Al-Fares proves a

partial converse of this statement.
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CHAPTER 1

A Motivating Problem

The research for thesis began with a short, but complex, question: Can we construct

an expander family? This turned out to be too broad. After much work, the research

came to be directed upon commutator subgroups of nonabelian 2-groups, the basis by

which we attempted to construct an expander family initially. The pages that follow

are an attempt to find bounds for the orders of quotient groups in the derived series

of such groups, given that their derived length is short (in this paper, derived length

3). We will prove that, if G is a finite nonabelian 2-group of derived length 3, then

the first two quotients of terms in the derived series must have order at least 8.

This section will serve to introduce nomenclature that drove the research, as

well as introduce the motivation for this work. Much of the foundational elements

for the group theoretic material can be found in [2]; this paper will assume some

familiarity with topics in group theory. To make some notation precise, if we have

G a group and H a subgroup of G, we write H ≤ G. If H is a proper subgroup, we

make this “strict,” and say H < G. The usage of capital letters will almost always

refer to a group, whereas lowercase letters will almost always refer to elements of a

group.

In addition, if H and K are subgroups of G, then H ∩ K and (if H or K is

normal in G) HK = {hk | h ∈ H, k ∈ K} are also subgroups of G, and HK is called
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the join of H and K. Other concepts in group theory will appear later, but most will

be made explicit as they appear.

Now, we may focus our attention on the graph theoretic question that drives

this thesis. Drawing on the work found in [5], we provide a number of definitions

and statements about graphs, leading up to a notion of an expander family. These

definitions and results come directly from [5] and are presented with minor revisions

below.

Definition 1.1. Let X = (V,E) be a graph and F ⊂ V . The boundary of F is

defined to be the set of edges with one endpoint in F and one endpoint in V \ F , and

is denoted by ∂F . That is, ∂F is the set of edges connecting F to V \ F .

Definition 1.2. The isoperimetric constant, or edge expansion constant of a

graph X = (V,E) is defined as

h(X) = min

{
|∂F |
|F |

∣∣∣∣ F ⊂ V and 0 < |F | ≤ |V |
2

}
.

Definition 1.3. Let (an) be a sequence of positive real numbers. We say that (an) is

bounded away from zero if there exists a real number ε > 0 such that an ≥ ε for

all n.

Definition 1.4. Let (Xn) be a sequence of d-regular graphs for some fixed d such that

|Xn| → ∞ as n→∞. We say that (Xn) is a family of expanders if the sequence

(h(Xn)) is bounded away from zero.

Definition 1.5. Let (Gn) be a sequence of finite groups, and take Γn to be a symmetric

subset of Gn with |Γn| = d, generating a sequence of Cayley graphs (Cay(Gn,Γn)) . If

we can choose the symmetric subsets Γn so that (Cay(Gn,Γn)) is an expander family,
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then we say that (Gn) yields an expander family.

Proposition 1.6. No sequence of abelian groups yields an expander family.

Proposition 1.7 (Subgroups Non-expansion Principle). Let (Gn) be a sequence of fi-

nite groups. Suppose that (Gn) admits (Hn) as a bounded-index sequence of subgroups.

If (Hn) does not yield an expander family, then (Gn) does not yield an expander fam-

ily.

Proposition 1.8 (Quotients Non-expansion Principle). Let (Gn be a sequence of

finite groups. Suppose that (Gn) admits (Qn) as a sequence of quotients. If (Qn) does

not yield an expander family, then (Gn) does not yield an expander family.

The three above propositions, taken together, imply that if (Gn) yields an

expander family, then for every fixed positive integer k, the sequence |Gk
n/G

k+1
n | is

bounded, where Gk
n is said to be the kth derived group of Gn. In other words, a

sequence of groups cannot yield an expander family if for any k, the sequence of

orders of kth terms in the derived series goes to infinity.

Interestingly, this statement only holds in one direction. Taking the smallest

nonableian simple group, the alternating group A5, and taking n-fold direct products

with itself will give a counterexample (see [5]). It also turns out that nonabelian

simple groups will always yield expander families, and so our research turns to trying

to find nonabelian nonsimple groups whose quotients are bounded for every fixed

positive integer k.

Trying to find bounds for each term of quotients motivates the research found

in this thesis. We focused on nonabelian nonsimple 2-groups, and focused on the

first two quotients. This thesis will prove that, given a finite 2-group G of derived
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length 3, then |G/G1| ≥ 8 and |G1/G2| ≥ 8; the precise statement is found at the

end of Chapter 3, in Corollary 3.12. In Chapter 2, we will find initial bounds using

techniques of P. Hall taken from [4]; Chapter 3 will improve on the first of those bounds

to achieve the desired result. Along the way, we will prove other statements that will

perhaps motivate further research into groups of larger derived length, including a

classification for all group that are of maximal class.
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CHAPTER 2

A Theorem Of P. Hall

This section will begin the examination of 2-groups and their derived series. Our

goal is to explicitly show that, given a finite 2-group G of derived length 3, then

|G/G1| ≥ 22 and |G1/G2| ≥ 23. It will be useful at this juncture to introduce

notational elements relevant to this discussion (including a precise definition of what

we mean by “derived series” above). For the most part, this thesis will deal with

characteristic subgroups of finite 2-groups; we say a subgroup H of G is characteristic

if any automorphism of G leaves H fixed. In addition, if K is a second characteristic

subgroup of G, then H ∩ K and, if H or K is normal in G, HK are characteristic

subgroups of G as well, as explained in [2]. Finally, note that because a characteristic

subgroup is fixed under all automorphisms, it is fixed under all inner automorphisms,

and therefore is normal.

Characteristic subgroups will form an important part of the research presented

here. For instance, in this paper, the focus lies upon commutator subgroups, and it

turns out that, given a group G, the subgroup generated by the set of all x−1y−1xy for

x, y ∈ G forms a characteristic subgroup. Note that G is a characteristic subgroup of

itself, as any automorphism maps G to itself in full, and note that if G is abelian, the

commutator subgroup is trivial, and therefore is necessarily maintained under any

automorphism. Here, given subgroups H and K of a group G, the subgroup denoted
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(H, K) is the subgroup generated by elements of the form

[h, k] = h−1k−1hk, (2.1)

for all h ∈ H and k ∈ K. The subgroup (H, K) is called a commutator subgroup of

G, and is a characteristic subgroup of G if H and K are characteristic subgroups.

Note that in the discussion of groups, a commutator subgroup is denoted by

the use of parenthesis (H, K). In the case of the commutator of elements of groups,

we will instead use brackets; that is, for h, k ∈ G, set [h, k] = h−1k−1hk. The

small difference, alongside the difference in lowercase and uppercase letters, will help

distinguish between elements and subgroups.

Now, with this notation, we arrive at the definition of a derived group, which

then gives rise to the derived series. Given a group G, the derived group is the group

(G, G). From here, let

G0 = G, and

G1 = (G, G);

then, the ith derived group is defined by

Gi = (Gi−1, Gi−1), (2.2)

for i a positive integer. This series of derived groups is known as the derived series

of G, and for any 2-group, the final iterate will be E, the trivial group, given by [4].

If Gn is trivial and Gn−1 is not, then the derived series is said to have length n. Note

that if the derived series is of length n, then there are n+ 1 groups in the series; the

value n is also known as the derived length, in that case. In addition, we consider
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the special case where G is the trivial group. If that is true, then G0 is trivial, and it

is said to be of derived length 0.

On occasion, it will be simpler to denote the first derived group, G1, by G′,

and similarly, to denote the second and third derived groups, G2 and G3, by G′′ and

G′′′ respectively. This “prime” notation is simply easier to type and discuss, so it

may appear as such later on in this paper.

With this in mind, a useful definition in the discussion of these 2-groups is that

of a central series of a group G. This is a monotonic sequence of normal subgroups,

beginning with K0 = E and ending with Kn = G, such that:

K0 ≤ K1 ≤ . . . ≤ Kn−1 ≤ Kn, (2.3)

with the property that for any i = 1, 2, . . . , n, the group

〈k−1x−1kx | k ∈ Ki, x ∈ G〉 = (Ki, G) ≤ Ki−1. (2.4)

To rephrase that, the commutator of any element of G with any element of Ki is an

element of Ki−1; or, Ki+1/Ki is in the center of G/Ki.

We will now introduce two “types” of series: The lower central series, and

upper central series. The lower central series of G is given by H1, H2, H3, . . ., where

H i = H i(G), H1 = G, and

H i = (H i−1, G) (2.5)

for i a positive integer. This series ends, like the derived series above, with the trivial

group, and has length n if Hn+1 is trivial and Hn is not. This small divergence from

the notation above should be noted, as this central series begins with the index of 1
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rather than 0. The length is called the class of G, and is denoted cl(G). The class of

G can be thought of as a measure of how close it is to an abelian group in properties;

a group is of class 1 if and only if it is abelian, and so a group with large class is fairly

divergent from an abelian group.

The upper central series functions somewhat differently; it is said to ascend,

as the starting term will be the trivial group. Here, the upper central series of G is

represented by Z0, Z1, Z2, . . ., where Z0 = E, Z1 = Z(G) (that is, the center of the

group), and Zi/Zi−1 is the center of G/Zi−1. Another way to consider the next term

Zi+1, given Zi, is by:

Zi+1 = {x ∈ G | ∀y ∈ G, [x, y] ∈ Zi}. (2.6)

In any finite 2-group, the lower central series will terminate in E, and the upper

central series will terminate in G.

It will be enlightening to use an example to demonstrate the differences be-

tween these three series. Since finite abelian 2-groups are not particularly interesting,

we will take G to be a nonabelian finite 2-group of small order; in this case, let

G = 〈r, s | r4 = s2 = e, sr = r−1s〉,

the dihedral group of order 8. Beginning with the derived series, G0 = G, and so:

G1 = (G, G) = {x | ∃ g, h ∈ G : g−1h−1gh = x}.

With some calculations, it turns out that G1 = {e, r2}, an abelian group of order 2.
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Therefore, the next iterate gives

G2 = (G1, G1)

∼= (Z2, Z2) = E.

Thus, G has derived length 2, as G2 is trivial and G1 is not. Turning to the lower

central series, by definition we get that

H1 = G, and

H2 = G1 = {e, r2}

by above. The next term in the lower central series is then

H3 = (H2, G)

= ({e, r2}, 〈r, s〉).

Since r2 commutes with both r and s, necessarily, for all g ∈ G, r2g−1r2g = e.

Therefore, H3 = E as well. In this case, the derived series and the lower central

series are the same.

Finally, we examine the upper central series. Beginning with Z0 = E, the next

term will be

Z1 = Z(G)

= {x | g−1xg = x ∀g ∈ G}

= {e, r2}.

The next term in the series must obey the relation that Z2/Z1 = Z(G/Z1). In other
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words,

Z2 = {x ∈ G | ∀y ∈ G, [x, y] ∈ {e, r2}} = G,

as since for any x, y ∈ G, [x, y] ∈ {e, r2}, it must be true for any fixed x ∈ G.

Therefore, Z2 = G, and the upper central series terminates here, as Z1 6= G.

Since the aim is to prove properties of finite 2-groups with series of these

types, it will be a good idea to show that any 2-group has a central series. In fact,

the construction of the upper central series above will always yield a central series for

any finite 2-group G. If such a G is abelian, then clearly

Z0 = E

and

Z1 = Z(G)

= G,

so the series exists and ends in G. If such a G is nonabelian, then an elementary

result of [4] is that Z(G) is nontrivial, and so the series has a length greater than 1.

Returning to the class of G, it was stated above that the class is given by the

length of the lower central series. This will remain the case, but in fact, for any finite

2-group, the length of the lower central series and the length of the upper central

series are the same.

Lemma 2.1. If G is a finite 2-group, where Ha is trivial and Ha−1 is not, and Zb = G

and Zb−1 is proper, then a− 1 = b.
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Proof. Let K0, K1, . . . , Kn be a central series of G. Clearly, for the upper central

series Zi,

K0 = Z0.

Take this to be the base case. Assume that for i,

Ki ≤ Zi.

By the definition of a central series, (Ki+1, G) ≤ Ki, so every element of Ki+1

corresponds in the homomorphism G → G/Zi to an element of the center of G/Zi;

in other words,

Ki+1 ≤ Zi+1.

By induction, then, Ki ≤ Zi for all i = 0, . . . , b.

Since the lower central series is a central series, by the above paragraph its

length must be at least the length of the upper central series; that is, a − 1 ≥ b.

Assume that H i ≤ Zb−i. Then H i+1 ≤ Zb−i−1, until

H i+1 ≤ Zb−i−1, . . . , Ha ≤ Z0 = E.

If this were the case, then the length of the lower central series would be less than

a− 1, which is a contradiction. Thus,

H i > Zb−1, (2.7)

and so we conclude that the lengths of the lower and upper central series are the same

for any finite 2-group.
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With some experience under our belt with these central series of finite 2-groups,

our attention can now turn to the main goal of this chapter. Using characteristics of

these central series, primarily the lower central series, we can arrive at a result that

bounds the orders of quotient groups of the derived sequence of a finite 2-group G.

However, before arriving at this statement, there are many hurdles. In the

interest of brevity, we will take but not prove a few statements from [4] that will be

useful in proving our main result. Immediately below, we find an elementary result

for 2-groups, taken from [4].

Theorem 2.2. If G is a 2-group, then G is solvable and the quotient groups of a

maximal normal series are all of order 2.

The next theorem comes from the fact that, using the previous theorem, we

can find normal subgroups of G contained in the upper central series that have a

corresponding normal subgroup K containing all of them. This is also taken from [4].

Theorem 2.3. If G is a finite 2-group and K is a normal subgroup of G not contained

in Zi, then K contains elements of Zi+1 \ Zi, and its order exceeds 2i.

These two theorems above will come into play when proving critical statements

leading to the conclusion of this chapter. Now, we will return to theorems which we

will prove explicitly in this thesis. Given a finite 2-group G, it can be proved that if

Ki denotes a central series of G, then the commutator of any element of Kj with any

element of H i belongs to Kj−i.

Before proving this claim, we introduce a shorthand by which we can discuss

commutator subgroups involving other commutator subgroups. If we have subgroups
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H, J , and K of G, then

((H, J), K) = (H, J, K).

This process may be iterated for many nested commutator subgroups; the shorthand

used is to reduce the complexity of the statement on paper. In addition to the above

notation, we take a theorem regarding such nested commutations from [4].

Theorem 2.4. If G is any group and H, J, K are any three normal subgroups of

G (not necessarily distinct), then each of the three groups A = (H, J, K), B =

(J, K, L), and C = (K, H, J) is contained in the join of the other two.

With the statement of this theorem regarding nested commutators established,

our attention returns to proving that if Ki denotes a central series of G, then the

commutator of any element of Kj with any element of H i belongs to Kj−i.

Theorem 2.5. If G is a 2-group and if

G = Km ≥ Km−1 ≥ . . . ≥ K1 ≥ K0 = E

is any central series of G, then

(Kj, H i) ≤ Kj−i, for

i = 1, 2, . . . ; j = m, m− 1, . . .

for H i the terms of the lower central series.

Proof. We will prove this claim using induction. Take that i = 1. Then, the statement

that will be proved becomes (Kj, H1) ≤ Kj−1. Since H1 = G, by the definition of a

central series K, it must hold. This provides a base case upon which we will apply

induction to i.
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Suppose, then, that (Kj, H i−1) ≤ Kj−i+1 for all j = m, m − 1, . . . , 1. Now,

consider the group

(Kj, H i) = (H i, Kj)

= ((H i−1, G), Kj)

= (H i−1, G, Kj).

Take D = (G, Kj, H i−1)(Kj, H i−1, G). With the results of Theorem 2.4, it holds

that (Kj, H i) ≤ D. In addition, (G, Kj) ≤ Kj−1, and therefore (G, Kj, H i−1) ≤

(Kj−1, Hj−1).

By the hypothesis,

(Kj−1, Hj−1) ≤ Kj−1−i+1

≤ Kj−i.

In addition, (Kj, H i−1) ≤ Kj−i+1 by the hypothesis, and therefore

(Kj, H i−1, G) ≤ (Kj−i+1, G)

= Kj−i.

Since both groups used to construct D are contained in Kj−i, it must be the case that

their join D ≤ Kj−i. This gives the desired relation (Kj, H i) ≤ Kj−i, so induction

holds and the claim is proved.

The above theorem applies to any central series Ki of G, and therefore this

theorem applies in the special cases of the lower and upper central series. Below, the

two corollaries will provide the necessary reformulation of Theorem 2.5.
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Corollary 2.6. For a finite 2-group G, given the upper and lower central series,

(Zj, H i) ≤ Zj−i for any i, j. In addition, every element of Hj commutes with every

element in Zj.

The second statement in Corollary 2.6 comes from the fact that, by the main

statement, the commutation (Zj, Hj) ≤ Zj−j = Z0 = E.

Corollary 2.7. For a finite 2-group G, given the lower central series, (H i, Hj) ≤

H i+j for any i, j. In addition, if cl(G) = c and 2i > c, then H i is abelian.

The statement above will prove to ultimately be the most useful form of The-

orem 2.5, but in general, Theorem 2.5 does not apply solely to finite 2-groups. As at

no point was the fact that G was a finite 2-group explicitly used; in fact, it can be

immediately generalized to include all p-groups.

With this in mind, we will now prove the two primary theorems of this chapter.

At their conclusion, the application of the second to the first will yield the desired

result that for any nonabelian finite 2-group G of derived length three, |G/G1| ≥ 22

and |G1/G2| ≥ 23.

Theorem 2.8. The ith derived group Gi of a finite 2-group G is contained in H2i.

Proof. Let G be a finite 2-group, where G0 = G and

Gi = (Gi−1, Gi−1)

= ((Gi−2, Gi−2), (Gi−2, Gi−2))

This process will iterate until the expression for Gi is given solely by commutations of

the group G0 = G. Since the number of commutator groups interior to the expression

doubles in each step, it is clear that when written as an expression in terms ofG0 alone,
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there will be 2i appearances in the expression. The expansion of this sequence is not

included past the second round, as commutations of commutators of this complexity

are difficult to write, even in shorthand notations.

Fortunately, on consideration of the lower central series, an explicit extension

to the most basic components is certainly possible. By the definition of the lower

central series, we have that

H2i = (H2i−1, G)

= ((H2i−2, G), G)

. . . = (. . . (((G, G), G), G) . . . , G)

Similarly, we see that at the end of the expansion, there will be precisely 2i appear-

ances of G in the expression.

Using these expansions, induction will prove the claim. Clearly it holds for

i = 1, as in that case,

G1 = (G0, G0)

= (G, G),

and

H21 = H2

= (H1, G)

= (G, G).

As clearly (G, G) ≤ (G, G), take this to be the base case.
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Now assume that the relation Gi−1 ≤ H2i−1
holds, and take both Gi and H2i .

By the initial relations defined above, Gi = (Gi−1, Gi−1) and H2i = (H2i−1, G). As

Gi−1 ≤ H2i−1
, and both are subgroups of G, it must be true that

(Gi−1, Gi−1) ≤ (H2i−1

, H2i−1

).

Corollary 2.7 gives precisely that

(H2i−1

, H2i−1

) ≤ H2i−1+2i−1

≤ H2i

Therefore, Gi ≤ H2i , as desired. With this established, the inductive step holds, and

therefore the relation holds for all nonnegative i.

Establishing Theorem 2.8 provides important information: Given the nth de-

rived group of G, it is known precisely in which element of the lower central series it

lies. In concert with the following theorem, it can be used to show that the quotient

groups have bounded order, as below we will show that quotient groups using central

series have bounded order.

Theorem 2.9. Let G be a finite 2-group, and let K be a normal subgroup of G. If

K ⊂ H i(G), then for positive a and nonnegative b, the quotient groups K/Ha(K)

and K/Zb(K) are all of order 2i at least, with the terms with H1(K) and Zn(K) for

each series being possible exceptions, where the class of K is n. In particular, if K is

nonabelian, then |Z(K)| ≥ 2i and |K/H2(K)| > 2i.

Proof. If K is abelian, then this theorem is trivial, so we will focus on a nonabelian

K / G. From here, define K1 = K ∩ Zi. Because K1 ≤ K and K ≤ H i, it must be

true that K1 ≤ H i as well.
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From Theorem 2.6, and the fact that K1 ≤ Zi, it must be true that K1 ⊂

Z(K). Since K is nonabelian, it must be the case that K1 < K. Then, it must be

true that K 6⊂ Zi, and so by Theorem 2.3, the order of K exceeds 2i. Since the center

of K is of order at least 2i it must be the case that |K1| is at least 2i.

If Za(K) < K, then K/Za−1(K) is nonabelian, and so it similarly results that

|Za(K)/Za−1(K)| ≥ 2i,

following precisely the same argument as above for K1. Thus, the quotient groups of

the upper central series (with the possible exceptions of the last entry) must all be of

order at least 2i.

Having proved the claim for the upper central series, our attention now turns

to the lower central series. We set K2 = H2(K) for the derived group of K. By

the claim, it must be that K2 is nontrivial. The goal here will be to establish that

the order of K/K2 is at least 2i+1. To accomplish this goal, set K3 to be a normal

subgroup of G such that |K2/K3| = 2; this can be done, as G is a finite 2-group, so

Theorem 2.2 gives that a such a normal subgroup exists.

By this, it must be true that K/K3 is nonabelian, which gives that its center

is of order 2i at least, by what has previously been shown. Since the quotient is

nonabelian, letting κ = K/K3 and Z(κ) to be the center of κ, necessarily |κ/Z(κ)| ≥

4. This gives that the order of K/K3 is at least 2i+2, and the order of K/K2 is at

least 2i+1.

Finally, if a is the largest integer such that Ha(K) is nontrivial, then let K4 be

a normal subgroup of G with |Ha(K)/K4| = 2. Once again, such a subgroup exists,
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by Theorem 2.2. In turn, by equation (2.7), the center of K/K4 does not contain

Ha−1(K)/K4, as the class of K/K4 is a. However, since K belongs to H i by the

claim, by Theorem 2.6 it must be the case that every element of Zi(G/Z4) commutes

with every element of K/K4.

By this fact, we conclude that Zi(G/K4) does not contain Ha−1(K)/K4.

Therefore, by Theorem 2.3,

|Ha−1(K)/K4| ≥ 2i+1

and so we conclude that

|Ha−1(K)/Ha(K)| ≥ 2i.

Therefore, the quotient groups of the lower central series of K must all have

order at least 2i.

The statement about the orders of quotient groups using the upper central

series will not be used to prove the main claim of this chapter, but for completion’s

sake, they provide useful insight into the structure of groups of specific classes. Having

established this theorem, we will proceed to the primary result.

Theorem 2.8 and Theorem 2.9 will now be utilized to give the desired bounds

on the quotients of the derived series for a nonabelian finite 2-group G of derived

length 3.

Theorem 2.10. Let G be a finite 2-group. If Ga+1 is nontrivial, then the order of

Ga/Ga+1 is greater than 22a.

Proof. Let Ga+1 be a nontrivial subgroup in the derived series of G. Since Ga is

nontrivial, necessarily Ga ≤ H2a by Theorem 2.8, as well as Ga+1 ≤ H2a+1
.
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We can apply Theorem 2.9 to the above result; because Ga ≤ H2a , the quotient

group Ga/Hα(Ga) is at least of order 22a , for any positive integer α. In particular, if

α = 2, then

Hα(Ga) = H2(Ga)

= (Ga, Ga)

= Ga+1.

Therefore, the order of of Ga/Ga+1 must be at least 22a . However, by the particular

case for a nonabelian group Ga and H2(Ga), |Ga/H2(Ga)| = |Ga/Ga+1| > 22a . Since

Ga+1 is nontrivial, and

Ga+1 = (Ga, Ga),

it must be true that Ga is nonabelian, and so the above strict inequality holds.

Remark 2.11. It can be shown that if Ga is nontrivial, then G is of order 22δ+δ at

least, for δ set below. Let G, as per usual, be a finite 2-group. Ga+1 is the derived

group of Ga. If Gδ > E, the order of Gδ is at least 2, and so the order of Ga/Ga+1 is

at least equal to 22a+1 for each a = 0, 1, . . . , δ− 1. Since the order of G is 2n, it holds

that:

n ≥ 1 +
δ−1∑
a=0

(2a + 1) = 2δ + δ. (2.8)

Thus G, being of order 2n, has |G| ≥ 22δ+δ.

The remark above serves to guide further research, as it gives some notion

of the order if one is searching for a 2-group of particular derived length. However,

the primary result comes from Theorem 2.10, which states that if the a + 1th term
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of a derived series is nontrivial, then |Ga/Ga+1| > 22a . Rewriting to an equivalent

statement, it becomes |Ga/Ga+1| ≥ 22a+1.

We now turn to our goal: Take G to be a nonabelian finite 2-group of derived

length 3. As Theorem 2.9 states that the desired order 2i may not hold for the last

term in the series, we can now determine the orders of G/G1 and G1/G2, as the final

term is G3. Taking a as appropriate,

|G/G1| ≥ 220+1 = 22

≥ 4, and

|G1/G2| ≥ 221+1 = 23

≥ 8,

which were the precise bounds we set out to establish at the outset.
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CHAPTER 3

Improving The Bound

In the previous chapter, it was established that, given a finite 2-group G with de-

rived length three, the orders of G/G′ and G′/G′′ were bounded below by 22 and 23

respectively. It turns out that, in the case of G/G′, the bound can be improved. In

this chapter, it will be established that, in fact, |G/G′| must be at least 23.

Despite the seemingly modest improvement to the bound, there is actually

quite a bit of work that must be done in order to prove this. We will begin with the

definition of a few mechanisms that will be instrumental in proving the claim of this

section. As in the rest of this paper, the group G is assumed to be a finite 2-group.

Here, we introduce a short theorem in order to borrow notation from [3]. In

characterizing the 2-groups in this paper, it is necessary to talk about abelian 2-groups

and their construction.

Theorem 3.1. A finite abelian 2-group G is the direct product of cyclic subgroups Hi,

for 1 ≤ i ≤ n. Moreover, the integer n and the orders |Hi| are uniquely determined

(up to order).

Given this theorem, there must be a uniquely defined integer n for any such

abelian 2-group G. Despite this theorem applying only to abelian 2-groups, it turns

out to be useful for all finite 2-groups.

Given G as above, there is a particular subgroup that will turn out to be
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handy for calculations. The subgroup of G made up of the intersection of all maximal

subgroups of G is called the Frattini subgroup of G, and it is denoted by Φ(G). In the

case where G has no maximal subgroups, we set Φ(G) = G. The Frattini subgroup is

always a characteristic subgroup. If a group has no maximal subgroups (as a maximal

subgroup is a proper subgroup), then the Frattini subgroup of G is itself.

It can be proved that the Frattini subgroup of a group G is, in fact, the

subgroup of all g ∈ G such that if X ⊂ G generates G, and g ∈ X, then X \ {g} also

generates G. This is described by g being a non-generator of G, for obvious reasons.

If g is not a non-generator of G, then it is a generator. Put precisely, g is a generator

of G if for all M 3 g such that 〈M〉 = G, then 〈M \ {g}〉 6= G.

Lemma 3.2. The Frattini subgroup Φ(G) of a finite group G is the set of all non-

generating elements of G.

Proof. We begin this proof by showing that if g is not an element of the Frattini

subgroup, then g must be a generating element of the group G. If g 6∈ Φ(G), then

there exists a maximal subgroup M of G such that g 6∈ M . The subgroup M is

maximal, so if there exists a subgroup K such that

M ≤ K ≤ G,

then either K = M or K = G. Take the subgroup generated by {g} ∪M . Then:

M ≤ 〈M, g〉 ≤ G. (3.1)

Since M was maximal, it must be true that 〈M, g〉 = G. Since M 6= G, g is a

generating element of G. Thus, any element not in Φ(G) is a generating element of

G.
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Next, we will show that any generator g of G is not in the Frattini subgroup.

This will be done by showing that if g is a generator, there is a maximal subgroup of

G that does not contain g. If g is a generator, then there exists a subset X of G such

that G = 〈X, g〉, and 〈X〉 6= G. Necessarily, then, g 6∈ X, as otherwise 〈X〉 = G.

Since 〈X〉 6= G, 〈X〉 is contained in a maximal subgroup H. Since H is

maximal, for all K such that

H ≤ K ≤ G,

either K = H or K = G. It must be true that g is not in H, as otherwise

G = 〈{g} ∪X〉

⊂ H.

This cannot be true, as H is a maximal subgroup, and so g 6∈ H. Thus, there exists

a maximal subgroup of G that does not contain g, so g 6∈ Φ(G), precisely as desired.

Therefore, g 6∈ Φ(G) if and only if g is a generating element of G, which is

equivalent to the claim.

With the above lemma proved, it will be convenient to refer to the Frattini

subgroup of any G in this thesis as the set of non-generating elements of G.

It can also be shown that if G/Φ(G) is cyclic, then G must be cyclic. This

comes from the fact that Φ(G) contains no generators of G. If there is an x in G such

that Φ(G)x generates G/Φ(G), then

G = 〈x, Φ(G)〉.
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As every element of Φ(G) may be removed from a generating set, then 〈x, Φ(G)〉 =

〈x〉, and so the above equality gives that

G = 〈x〉.

Thus, G must be cyclic.

As once again the class of a group G shows up in this chapter, so a reminder

of the definition will be useful. Given a group G, the length of the lower central

series defines the class; that is, for H1 = G, and H i = (H i−1, G), cl(G) = n when

Hn+1 is trivial and Hn is nontrivial. Any nontrivial abelian group will have class 1,

as H2 = E.

Moving on, it will be handy to define a few of the commonly seen 2-groups;

in fact, these 2-groups will form the basis for the improvement of the bounds set out

above. In each of the following constructions, m is assumed to be at least 3. First,

there is the dihedral group Dm, which is defined handily by the relation

Dm = 〈r, s | r2m−1

= e, s2 = e, sr = r−1s = r2
m−1−1s〉. (3.2)

This dihedral group has order 2m. In other texts, usually Dm is defined as the dihedral

group of order m, but that is not the case here, as we are only interested in 2-groups.

In addition to the dihedral group, there are Sm, Qm, and Mm(2). The first is

known as the semidihedral group, and the second as the generalized quaternion group.

The last, as defined by [3], is not known by any particular name. The semidihedral

group has a construction similar to that of Dm, and is in fact given by

Sm = 〈r, s | r2m−1

= e, s2 = e, sr = r2
m−2−1s〉. (3.3)
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Note that the order-reversal action on sr now takes r to r2
m−2

r−1, rather than simply

r−1. In addition, this group necessarily has m ≥ 4; if m = 3, then the relation

becomes

sr = r2−1s

= rs,

so the group would be abelian. The construction of Mm(2) is very similar to that of

the semidihedral group, and is constructed by

Mm(2) = 〈r, s | r2m−1

= e, s2 = e, sr = r2
m−2+1s〉. (3.4)

This group is denoted by Mm(2) because this construction can be performed with

any prime p replacing 2. In this thesis, we will deal exclusively with Mm(2), so for

brevity’s sake, from now on it will be referred to as simply Mm.

The final general 2-group construction needed for this chapter is the general-

ized quaternion group, Qm. The smallest quaternion group is of order 8, which is in

agreement with the assumption that, for all these 2-groups, m ≥ 3. The generalized

quaternion group is defined as

Qm = 〈r, s | r2m−1

= e, s4 = e, r2
m−2

= s2, sr = r−1s〉. (3.5)

Under this construction, Qm has order 2m, and so Q3 = Q, the familiar order 8

quaternion group. These four families of 2-groups, Dm, Sm, Mm and Qm, will even-

tually be used to show that any 2-group that fails to have |G/G′| ≥ 23 will also be a

2-group of derived length less than 3.
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Each of the groups Dm, Sm, Qm, and Mm has order 2m. In fact, by using the

defining relations, any element of any of those groups can be expressed uniquely in

the form rasb with 0 ≤ a < 2m−1 and 0 ≤ b ≤ 1.

With the construction of these specific groups behind us, we now turn to

specific subgroups of an arbitrary finite 2-group G. First, there is Ωi(G), which is

the subgroup of G generated by its elements of order dividing 2i; that is, if x ∈ G

has order 2j for j ≤ i, then x is a generating element of Ωi(G). Similarly, fi(G) is

the subgroup generated by the elements of the form x2
i
, where x is an element of G.

Because group automorphisms maintain the order of elements, both Ωi(G) and fi(G)

must be characteristic subgroups of G as they remain fixed under any automorphism.

As a final note of convenience, when discussing these groups, let H = 〈r〉;

namely, H is the maximal cyclic subgroup for any of these groups defined above.

Having established these definitions, we may now move on to some basic lem-

mas regarding groups. Let G be a finite 2-group, and let Z(G) be the center of G, as

usual.

Lemma 3.3. If G/Z(G) is cyclic, then G = Z(G) and G is abelian.

Proof. If y is an element of G whose image generates G/Z(G), then every element of

G is of the form xyi for some x in Z(G) and some integer i. But then it is immediate

that any two elements of G commute, and so G = Z(G) is abelian.

In addition to the lemma above, it will be useful to show that any group that

has no element of order greater than two is an abelian group.

Lemma 3.4. Let G be a group wherein all non-identity elements are of order 2. Then

G is abelian.
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Proof. If x, y ∈ G, then (xy)2 = x2 = y2 = 1, and so necessarily

xyxy = x2y2

= xxyy.

Therefore, xy = yx and so then G must be abelian.

With all these things out of the way, we can now proceed to the theorems that

will show that any finite 2-group of derived length 3 cannot have |G/G′| = 22. To

start, we will focus on proving some statements about these 2-groups; primarily, it

will be shown that none of the groups defined above are isomorphic. This will not

be used to directly show the main claim of this chapter, but it will provide a better

classification for finite nonabelian 2-groups that are not of derived length 3. As there

are many properties to cover, the claims will be made distinct.

Theorem 3.5. If G = Mm, then the following hold:

(a) cl(G) = 2 and |G′| = 2.

(b) Φ(G) = Z(G) is cyclic of order 2m−2.

(b) Ωi(G) is abelian and isomorphic to Z2i × Z2, for 1 ≤ i ≤ m− 2.

Proof. Set G to be Mm. Let G = 〈r, s〉 satisfying the relations defined previously in

equation (3.4). Clearly, in G, any ri commutes with any other rj. If it can be shown,

then, that for some i, ri commutes with s, then that ri ∈ Z(G). To find such an i,
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take sri and set it equal to its commutation, ris:

sri = (r1+2m−2

)is

= ri+2m−2is

= ris.

Therefore, ri ∈ Z(G) when i ≡ i + 2m−2i (mod 2m−1). Since 2m−2i ≡ 0

(mod 2m−1) for any even i, it is easy to see that then ri ∈ Z(G) for any even i ≤ 2m−1.

In addition, it can be shown that for any odd positive integer a < 2m−1,

ras 6∈ Z(G):

(ras)−1s(ras) = sr−asras

= r−a(2
m−2+1)ssras

= r−a2
m−2−a+as

= r−a2
m−2

s.

This gives that if a is odd, then ras is not central. On the other hand, srs = r1+2m−2
,

so s 6∈ Z(G). Now, assume that for an even positive a < 2m−1, ras ∈ Z(G). The

above statements show that ra ∈ Z(G), and so since Z(G) is closed under the group

operation, r−a ∈ Z(G). Thus s ∈ Z(G), which is a contradiction. Therefore Z(G) =

〈r2〉. This is a cyclic group of order 2m−2, as that is the order of r2.

We will now show that Z(G) = Φ(G). As Φ(G) may not contain any generators

of G, necessarily neither r nor s are in Φ(G). In addition, Z(G) ⊂ Φ(G), as 〈r2〉

contains no generators of G. To show that Z(G) = Φ(G), assume that for some i,

ris ∈ Φ(G). If i is even, then r−i ∈ Φ(G), so by closure, s ∈ Φ(G), a contradiction.
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If i is odd, since r2 ∈ Φ(G), by closure r2j+is ∈ Φ(G) for any j < 2m−2; in

other words, rks ∈ Φ(G) for all odd k and rk ∈ G. Therefore, |Φ(G)| = 2m−1. Now,

take G/Φ(G). There are precisely two left cosets, so |G/Φ(G)| = 2 in this case.

Therefore, G/Φ(G) is cyclic, which implies that G is cyclic, which is a contradiction,

as Mm is nonabelian. Therefore Z(G) = Φ(G).

From here, assign r2
m−2

= z; this shorthand will be more convenient when

discussing commutators of the group G, as the relations reduce to significantly less

complex exponents. In equation (3.4), then, the order-reversal for Mm would then be

given by sr = zrs. Clearly,

z2 = r2·2
m−2

= e.

Then, for any positive integer k such that k < m− 1:

[rk, s] = r−ksrks

= r−k(rk)2
m−2+1ss

= rk2
m−2+k−k

= zk,

and

(srk)2 = srksrk

= (rk)2
m−2+1ssrk

= r2k+2m−2k

= r2kzk.
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First, using the above calculations, it is clear that

〈z〉 ⊂ (G, G) = G′.

For the opposite inclusion, as 〈z〉 is normal, take G/〈z〉. This quotient group is

abelian, so then G′ ⊂ 〈z〉. Thus, 〈z〉 = G′ and so G′ is of order 2. Since G′ is

then abelian, G′′ is trivial. By the definition of the lower central series found in the

previous chapter, H2 = (G, G) and

H3 = (H2, G)

= (〈z〉, G)

= E,

so cl(G) = 2 as H3 is trivial.

Next, we turn our attention to Ωi(G), which is generated by elements whose

orders divide 2i. For any positive integer i < m− 1, it must be true that s ∈ Ωi(G),

and similarly z ∈ Ωi(G), as both are of order 2. Since m > 3 both by the assumptions

for G and the definition of Mm, srk has order dividing 2i whenever (srk)2
i

= e. Then:

(srk)2
i

= (srksrk)2
i−1

= (r2kzk)2
i−1

= r2k·2
i−1

zk·2
i−1

= rk2
i

= e.
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Since the order of r is 2m−1, for the above equality to hold, then

rk2
i

= r(n2
m−1−i)2i

= (r2
m−1−i+i

)n

= en = e.

Therefore k must be divisible by 2(m−1)−i.

We will now show that that Ωi(G) ∼= Z2i×Z2. First, it was already determined

that Z(G) = 〈r2〉; that is, any even power of r will commute with any other element

of G. In particular, any rk where k|2i and k 6= 1 will commute with all elements of

G.

In addition, if k|2i and k 6= 1, then |rks| = |rk|, as for even k,

rksrks = rkzkrkss

= r2k.

This gives us that if rk ∈ Ωi(G), then necessarily rks ∈ Ωi(G) as well. In addition, any

element of this form will commute with others. Let a and b be divisible by 2(m−1)−i.

Then:

(ras)(rbs) = rasrbs

= razbrbss

= ra+b,
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and

(rbs)(ras) = rbsras

= rbzarass

= ra+b.

Since any element of order dividing 2i commutes with any other, Ωi(G) must be an

abelian 2-group. In addition, Ωi(G) = 〈r2m−i−1
, s〉, so it must be isomorphic to an

abelian 2-group with two generators, and the group must be of order 2i · 2 = 2i+1.

From these derived facts, we shall see if an isomorphism φ may be constructed

between Ωi(G) and Z2i ×Z2. The group Z2i ×Z2 has precisely two elements of order

2, as does Ωi(G), so we will begin there. Set φ(s) = (0, 1) and φ(z) = (2i−1, 0).

Since Ωi(G) is generated by {r2m−i−1
, s}, we know that φ(r2

m−i−1
) = (1, 0). Once

the homomorphism property for this function is verified, it will be shown that this

assignment for the generators gives the correct assignment for z. Since |rk| = |rks|

by the above considerations, it makes intuitive sense to set φ(r2
m−i−1

s) = (1, 1). In

general, this mapping will be defined by the following:

φ(ra2
m−i−1

sb) = (a, b) (3.6)

where 1 ≤ a < 2i and b ∈ {0, 1}.

This function φ then maps generators to generators, as Z2i×Z2 = 〈(1, 0), (0, 1)〉.

It can also be shown to satisfy the homomorphism property. Using the definition pro-
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vided above:

φ([r2
m−i−1

]asb) + φ([r2
m−i−1

]nsm) = (a, b) + (n,m)

= (a+ n, b+m)

= φ([r2
m−i−1

]a+nsb+m)

= φ([r2
m−i−1

]a[r2
m−i−1

]nsbsm)

= φ([r2
m−i−1

]asb[r2
m−i−1

]nsm).

The commutation follows in the final step, as rn2
m−i−1

is of even exponent and is

therefore in the center of G. This verifies that, indeed, this mapping is a homo-

morphism. With this in mind, it is easy to see that φ(z) = (2i−1, 0), as (2i−1, 0) =

φ([r2
m−i−1

])2
i−1

= φ(r2
m−i−1·2i−1

) = φ(r2
m−2

) = φ(z), so the initial intuition was cor-

rect.

By the construction of φ, it is easy to see that it must be surjective, and

since |Ωi(G)| = |Z2i × Z2|, then it must be injective as well. Therefore a bijective

homomorphism exists between them, and so they are isomorphic as claimed.

With these facts proved about Mm, our attention now turns to the other three

2-groups defined previously.

Theorem 3.6. Set G = Dm, with m ≥ 3, Qm, or Sm. Then the following hold:

(a) cl(G) = m− 1.

(b) Φ(G) = G′ is cyclic, and of order 2m−2.

(c) |Z(G)| = 2 and G/Z(G) is isomorphic to Dm−1.

Proof. Take G to be a 2-group as above, with m ≥ 3. By the definitions provided
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earlier in this chapter, for both Dm and Qm, sr = r−1s; for Sm, on the other hand,

sr = r2
m−2−1s = zr−1s (continuing the usage of z as defined in the previous proof).

Now, consider [r, s]. If G is either Dm or Qm, then [r, s] = r−1srs = r−2,

which would then give that r−2 ∈ G′. Since G′ is a subgroup and therefore closed

under taking inverses, r2 ∈ G′. If G is Sm, then

[r2
m−3+1, s] = r−2

m−3−1sr2
m−3+1s

= r−2
m−3−1(r2

m−3+1)2
m−2−1

= r−2
m−3

r−1r2
2m−5

r2
m−2

r−2
m−3

r−1.

Since here m > 3,

r2
2m−5

= (r2
m−1

)2
m−4

= e.

Then [r2
m−3+1, s] = zzr−2, so r−2 ∈ G′ and so it follows that, once again, r2 ∈ G′.

With these facts established, for any of these three cases |G′| ≥ 2m−2, and

therefore |G/G′| ≤ 2m/2m−2 = 4. Now, r 6∈ G′; if it can be shown that s 6∈ G′, then

necessarily G′ ⊂ Φ(G). Assume that s is an element of the commutator subgroup.

Then, s can be written as the product of commutators of elements of G; namely,

there exist a1, . . . , an, b1, . . . , bn ∈ G such that

a−11 b−11 a1b1 · · · a−1n b−1n anbn = s.

Since no element of the form rk has an inverse of the form rks, it is clear that

the left hand side of the equation contains an even number of occurrences of s. If G
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is Dm or Sm, the order of s is 2, and as such an equality is impossible, as the left side

will always end with sj, for a positive even integer j. If G is Qm, then the order of s is

4, and z = s2; once again, this equality is impossible, as the left side will always end

with sj, similarly to the above case. Therefore, in all three cases, G′ is generator-free,

and as such, G′ ⊂ Φ(G).

If Φ(G) strictly contained G′, then as |G/G′| = 4, and Φ(G) 6= G because G is

finite and nontrivial, it must be true that |G/Φ(G)| ≤ 2. However, if |G/Φ(G)| = 2,

then G/Φ(G) is cyclic, and so G would be cyclic as well, which is a contradiction.

The remaining possibility is that |G/Φ(G)| = 1, but G is finite and nontrivial, so this

is not possible either. Then, here, G′ = Φ(G) and |G/Φ(G)| = 4.

Next, we examine the center of G, so take [rk, s]. This is either [rk, s] = r−2k

or r−2k+k2
m−2

= r−2kzk, so s commutes with r if and only if 2m−2|k. Therefore,

z ∈ Z(G) and no other power of r is in Z(G). In addition, no element of the form rjs

centralizes r for any j, so then the center is simply 〈z〉 = {e, z}, and so |Z(G)| = 2

as claimed.

Now, set Ḡ = G/Z(G) = 〈r̄, s̄〉. Since G is finite,

|G/Z(G)| = |G|
|Z(G)|

=
2m

2
= 2m−1.

In addition, for 0 ≤ k < 2m−2, rkZ(G) = zrkZ(G), so |r̄| = 2m−2. Next, if G = Qm,

then s2 = r2
m−2

, and so s̄2 = e. If G is either Sm or Dm, then s2 = e to begin with,

and so s̄2 = e as well. Thus, in any case, |s̄| = 2.

To demonstrate that Ḡ ∼= Dm−1, take s̄r̄s̄. If G is either Qm or Dm, then
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srs = r−1 by the construction of the group, so s̄r̄s̄ = r̄−1. If G is Sm, then

srsZ(G) = {srs, srsz}

= {zr−1, r−1}

= r−1Z(G),

so here as well s̄r̄s̄ = r̄−1. Therefore,

Ḡ = 〈r̄, s̄ | r̄2m−2

= s̄2 = e, s̄r̄ = r̄−1s̄〉 ∼= Dm−1〉.

If m = 3, then m − 1 = 2, and Ḡ ∼= D2 is an abelian group, so necessarily

cl(Ḡ) = 1 = m − 2. If m ≥ 4, then m − 1 ≥ 3 and Dm−1 is nonabelian. For this

group, [r, s] = r2, and so (Dm−1, Dm−1) = 〈r2〉 = H2, for H i defining the lower

central series. If m = 4, then H3 = (H2, D3) = {e}, as [r2, x] = e for any x ∈ D3,

and so cl(Ḡ) = 2 = m− 2. Consider this to be the base case.

Consider, then, that cl(Dm−1) = m−2. Now, take Dm and evaluate (Dm, Dm).

H2 = (Dm, Dm) = 〈r2〉, and so |〈r2〉| = 2m−1. Then H3 = (H2, Dm) = 〈r4〉, as

[r2, s] = r−2sr2s = r−4, so H3 = 〈r4〉 and |H3| = 2m−2. Then, H3 ∼= (Dm−1, Dm−1),

and since the lower central series contains exactly one more group, cl(Dm) = m− 2 +

1 = m− 1. By this inductive step, for any m ≥ 3, cl(Ḡ) = m− 2. Therefore, we have

that cl(G) = m− 1.

Now, facts have been established about all of Dm, Sm, Qm, and Mm, for m ≥ 3.

It remains to be shown, then, that none of these four groups are isomorphic when of

the same order.

Theorem 3.7. No two of the groups Mm, Dm, Qm, or Sm are isomorphic.
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Proof. In order to show that none of these four groups are isomorphic, it is sufficient to

show that a property preserved under isomorphism differs between the four of them.

For this proof, we will focus on Ω1(G), for G one of the four finite 2-groups above; as

usual, take m ≥ 3 as appropriate. As a refresher, recall that Ωi(G) is the subgroup

of G generated by elements of order dividing 2i. This subgroup is an invariant, so if

the order differs for Mm, Dm, Qm, or Sm, then they cannot be isomorphic.

In Theorem 3.5, it was established that Ωi(Mm) is isomorphic to Z2i × Z2.

Therefore, if G = Mm, then Ω1(G) ∼= Z2 × Z2. This subgroup is therefore of order 4,

and is noncyclic abelian.

We begin the examination of the other three groups with G = Dm. In G,

(rs)2 = r(srs)

= r(r−1ss) = rr−1

= e,

so |rs| = |s| = 2. Then, Ω1(G) ⊃ 〈rs, s〉 = 〈r, s〉 = G, so G = Ω1(G). Therefore

Ω1(Dm) is of order 2m and is noncyclic nonabelian.

Next, take G = Qm. For any positive integer k < 2m−1,

(rks)2 = rk(srks)

= rk(r−kss) = rkr−ks2

= r2
m−2

.

Therefore, no element of the form rks has order 2 in G. Since s2 = r2
m−2

= z is of

order 2, therefore Ω1(G) = 〈z〉 = Z(G). Then Ω1(Qm) is cyclic of order 2.
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Finally, take G = Sm. In G, |s| = 2, so s ∈ Ω1(G). Now, once again take any

positive integer k < 2m−1, and evaluate

(rks)2 = rk(srks)

= rk(rk2
m−2−kss) = rkrk2

m−2−k

= rk2
m−2−k+k = rk2

m−2

= zk.

Then, |rks| = 2 if and only if k is even. Then, Ω1(G) = 〈r2s, s〉 = 〈r2, s〉. Let r2 = a.

Then, |a| = 2m−2, and

sa = a2
m−2−1s

= r2
m−1−2s

= r−2s = a−1s.

Therefore, Ω1(G) = 〈a, s | a2m−2
= s2 = e, sa = a−1s〉, which is isomorphic to Dm−1,

a noncyclic (and nonabelian for m > 3) group of order 2m−1.

Clearly, none of Ω1(Mm), Ω1(Dm), Ω1(Qm), or Ω1(Sm) are isomorphic, and

since this subgroup is invariant, necessarily none of the four groups themselves are

isomorphic, either. Thus, the claim is proved.

With these facts established, distinguishing the above four finite 2-groups, the

attention of this chapter now turns to a finite nonabelian 2-group G and discussing

its structure. Before we begin the next theorem, a small piece of notation will be

useful to introduce.

If G is a group and A is a subgroup of the set of automorphisms on G, then

CG(A) is the set of all elements of G that are fixed by elements of A. Clearly, if
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A is the trivial subgroup, then CG(A) = G, as all elements are fixed by the identity

automorphism. As a constructive example, we will examine CZ(A). The integers have

precisely two automorphisms: The trivial automorphism, and negation. If A contains

the negation automorphism, then CZ(A) = {0}, as only the identity is left fixed.

For a case where this subgroup is nontrivial, consider Z4, again with A being

the trivial and negation automorphisms. Here, CZ4(A) = {0, 2} ∼= Z2, as −2 ≡ 2

(mod 4).

As a final issue of notation, sometimes this subgroup will be generated using a

subgroup H ⊂ G. The subgroup CG(H) is the set of elements of G fixed by all inner

automorphisms by elements of H. That is, CG(H) = {g | h−1gh = g for all h ∈ H}.

Note that if G is abelian, then any inner automorphism will be trivial and so CG(H) =

G; take any g ∈ G and for any h ∈ H, with H a subgroup of G, h−1gh = h−1hg = g.

We now prove the key lemma en route to the main theorem of this chapter. It

is a classification theorem for certain finite 2-groups. It turns out that if G is a finite

nonabelian 2-group with a cyclic subgroup of half its order, then it will be isomorphic

to one of the four Mm, Dm, Qm, and Sm.

Theorem 3.8. Let G be a nonabelian 2-group of order 2m, which contains a cyclic

subgroup H of order 2m−1. Then:

(i) If m = 3, then G is isomorphic to D3 or Q3.

(ii) If m > 3, then G is isomorphic to Mm, Dm, Qm, or Sm.

Proof. Necessarily, as G is a finite nonabelian 2-group, m ≥ 3 (as given m < 3, G

could not be a nonabelian 2-group). In addition, H is a cyclic subgroup of order
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2m−1 in G. This subgroup is normal, and since |H| = 2m−1, G/H is of order 2 and

therefore cyclic.

Now, as G/H is cyclic, it must be true that H 6⊂ Z(G). By Lemma 3.3, if

G/Z(G) is cyclic, then G is abelian, which contradicts the assumption of this theorem.

In addition, since G is a finite group, any subgroup of G must have order dividing 2m.

Using this, it can be shown that CG(H) = H. First, necessarily H ⊂ CG(H); as H is

cyclic, for any h1, h2 ∈ H, h−11 h2h1 = h2. Thus, any inner automorphism generated

by an element of H will fix elements of H.

If CG(H) is not a subset of H, then CG(H) = G. Therefore, |CG(H)| = 2m.

This gives that H is in Z(CG(H)), and because |CG(H)/Z(CG(H))| = 1 or 2, then

CG(H) must be abelian, which is a contradiction. Therefore CG(H) ⊂ H and it

can be concluded that H = CG(H). Therefore, G/H is isomorphic to a subgroup of

Aut H of order 2. With this established, set H = 〈h〉, with |h| = 2m−1.

Beginning with the first part of this theorem, assume m = 3. Since H is a

cyclic group of order 4, it has a unique nontrivial automorphism (namely, negation).

Therefore, for any g ∈ G \ H, it must be true that g−1hg = h−1. In addition,

G = 〈h, g〉, also for g ∈ G \ H. Since G is nonabelian and m = 3, then for some

positive integer a, g2 = h2a. If a is even, then h2a = g2 = e, and so G ∼= D3. If a is

odd, then h2a = h2 = g2 and so G ∼= Q3. Therefore, part (i) of the above claim holds.

If m = 3, then S3 is abelian, and therefore it cannot be isomorphic to G. In

addition, if m = 3, then M3 = 〈r, s | r4 = s2 = e, sr = r3s = r−1s〉, so M3 = D3.

Beginning with m = 4, these four groups are all nonabelian and non-isomorphic, so

now we turn to part (ii) of the claim.
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Suppose now that m > 3. Take two elements of G outside of H, namely

u, g ∈ G \ H. Since H is of index 2 in G, u2 ∈ H. Then u2 = h2a for some

nonnegative integer a < 2m−1; if the exponent was not even, then it would generate

the whole group, which is not possible as it is noncyclic.

Now, we choose an integer c such that

a+ c(1 + 2m−3) ≡ 0 (mod 2m−2). (3.7)

This is possible, as m > 3, so the exponents in the expression will never be zero.

Now, take the h from above and set g = uhc. Given this equality:

g2 = (uhc)2 = uhcuhc

= u(uu−1)hc(uu−1)uhc

= u2(u−1hcu)hc = h2ahc(1+2m−2)hc

= h2a+2c(1+2m−3) = (ha+c(1+2m−3))2.

By the expression in equation (3.7), it must be that ha+c(1+2m−3) = e as h has order

2m−1, so then g2 = e.

With the formulation of g ∈ G\H established, we can now examine the action

of g on h ∈ H. Given that |g| = 2, one of the following three relations must hold:

g−1hg = h1+2m−2

, (3.8)

g−1hg = h−1, (3.9)

or

g−1hg = h−1+2m−2

. (3.10)
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Having established these three possibilities, let us first take equation (3.8) to

be the case. Since |g| = 2, |h| = 2m−1, taking g on both sides of the expression yields

that

g−1hg = h1+2m−2

gg−1hg = gh1+2m−2

= hg,

so it follows from the definition of Mm that G ∼= Mm.

Now our attention turns to the actions given by equations 3.9 and 3.10. In

the case of the former, set

g−1hkg = hk

= h−k = hk.

Since −k ∼= k (mod 2m−1) when k = 2m−2, and again setting h2
m−2

= z, we have

〈z〉 ⊂ Z(G). In the case of the latter, once again set

g−1hkg = hk

= hk(−1+2m−2) = hk.

Once again, we examine −k+k2m−2 ∼= k (mod 2m−1). From this, k must be even, as

otherwise k2m−2 ∼= 2m−2 (mod 2m−1), the expression reduces to −k ∼= k (mod 2m−1).

This gives that k = 2m−2, so as above, 〈z〉 ⊂ Z(G).

In both cases, with some calculation, it turns out that 〈z〉 = Z(G). On the

other hand, as g2 ∈ H, for any h ∈ H, it must be true that g−2hg2 = h. In

addition, g−2gg2 = g, so then g2 ∈ Z(G). Since Z(G) = 〈z〉, for some b, we have that

g2 = zb = hb2
m−2

.
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If b is even, then g2 = e. Since g was an arbitrary element of G \ H, it can

be concluded that any element in G \H is of order 2. Thus, if equation (3.9) is the

action of g on h, then G is isomorphic to Dm. If equation (3.10) is the action, then

G is isomorphic to Sm.

If b is odd, then g2 = z, and if the action of g on h is given by equation (3.9),

then G is isomorphic to Qm. There remains a final case to consider, where b is odd

and the action is g−1hg = h−1+2m−2
.

In this case, set g = uh. Since b was odd, it must hold that u2 = z, and so

g2 = (uh)2

= uhuh

= u2(u−1hu)h

= zh−1+2m−2

h

= zh−1+2m−2+1

= z2 = e.

Therefore, by the defined action of g on h, in this case G is isomorphic to Sm. Thus,

for any m > 3, G is isomorphic to one of Mm, Dm, Qm, or Sm.

The groupsDm, Qm, and Sm each have classm−1. They also have commutator

factor groups of order 4. The theorem below will show that, if |G/G′| = 4 = 22, then

G is one of Dm, Qm, or Sm and as such, G′′ is trivial and therefore G does not have

derived length three.

Theorem 3.9. Let G be a finite nonabelian 2-group of order 2m, with cl(G) = m−1.

Then, |G/G′| = 4.
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Proof. Suppose cl(G) = m− 1. G is nonabelian, and so it must be noncyclic. It was

proved earlier that if G/Φ(G) is cyclic, then G is cyclic. The contrapositive of this

statement gives that, necessarily, G/Φ(G) is noncyclic, so |G/Φ(G)| ≥ 4. Given this,

it comes from [3] that |G/G′| ≥ 4 as well.

Assume, then, that |G/G′| > 4. If that is the case, then the next term in the

lower central series (as H2 = G′), will be H3 = (G′, G). Since |G/G′| ≥ 8 = 23, the

the case for the largest possible class of G begins with |G/G′| = 8, or |H2| = 2m−3.

To maximize the length of the lower central series, for every i ≥ 3,

|H i| = |H
i−1|
2

= 2m−i−1 = 2m−(i+1).

This iteration ends when i = m− 1, as

|Hm−1| = 2m−(m−1+1)

= 20 = 1,

so Hm−1 is trivial. However, by the definition of the class of G, this would mean

cl(G) is maximally m− 2, which is a contradiction with the assumption. Therefore,

|G/G′| = 4.

For the purposes of our main theorem, this theorem, while noncritical, provides

a useful insight into groups of derived length three. As we shall see in the following

theorem, if a finite 2-group G has |G/G′| = 4, it cannot be of derived length three.

Therefore, any finite 2-group of derived length three or larger must not have class

m− 1. In fact, it is said that any group of order 2m with class m− 1 is of maximal

class, and so this theorem is a classification of all groups of maximal class for p = 2.

45



Before we improve the bound, there is a lemma regarding the family of groups

Dm, Qm, and Sm that will be handy.

Lemma 3.10. If m > 3, then Dm, Qm, and Sm contain no noncyclic abelian subgroup

of order 8.

Proof. Since m > 3, if G is one of the groups in the claim, then |G| ≥ 16. The goal

will be to show that if G has an abelian subgroup of order 8, it must be cyclic. Un-

fortunately, there seems to be no way to prove the claim without explicit calculation

for each group, so we will be brief and demonstrate the process for Dm.

Take G as above, and assume that there is a subgroup H < G such that

|H| = 8, and H is abelian and noncyclic. By the fundamental theorem of finite

abelian groups, there are precisely two choices for H:

H ∼= Z2 × Z2 × Z2, or

H ∼= Z4 × Z2.

In the first case, H must be generated by three distinct, commutating elements of G,

each of order 2; in the second, H must be generated by two distinct, commutating

elements of G, one of order 4 and the other of order 2.

If G = Dm, then take x, y, z ∈ G such that H = 〈x, y, z〉 for the first case.

The elements of order 2 in G are r2
m−2

and ras for a = 1, . . . , 2m−1, so at least two

elements must be of the form ras, as each are distinct. Moreover, for at least one

of them, a must not equal 2m−2, in order for x, y, z to generate a group of order 8.

But then, an element of that form cannot commute with another element of the form

form rbs for b even. Therefore, the subgroup cannot be isomorphic to Z2 × Z2 × Z2.
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Thus, H can only be isomorphic to Z4×Z2. Once again, all elements of order

2 are r2
m−2

and ras for a = 1, . . . , 2m−1, and the elements of order 4 are r2
m−3

and its

inverse. The order 2 element cannot be r2
m−2

, as otherwise the group is not of order

8, but no element of the form ras commutes with r2
m−3

, so this is not possible either.

Thus, G ∼= Dm does not have a noncyclic abelian subgroup of order 8.

Similar techniques apply almost identically to show the same for Qm and Sm,

so the claim is then proved, and no group in the family Dm, Qm, and Sm for m > 3

have a noncyclic abelian subgroup of order 8.

With this brief lemma completed, attention now turns to the final claim, which

will show that any finite 2-group G of derived length three must have |G/G′| > 4.

Theorem 3.11. Let G be a finite nonabelian 2-group, of order 2m with m ≥ 3, in

which |G/G′| = 4. Then G is isomorphic to one of Dm, Qm, or Sm, none of which

are of derived length 3.

Proof. First, let G be a finite nonabelian 2-group, of order 2m with m = 3. We know

that G is nonabelian, so by Lemma 3.4, there must be at least one element of order

greater than 2. That element cannot be of order 8, as then G would be cyclic, so G

must contain an element of order 4. Then, G must contain a cyclic subgroup of order

4. By Theorem 3.8 (i), G must then either be D3 or Q3.

Now, let m ≥ 3. We know that G′ is a normal subgroup of G and G′ is

nontrivial as G is nonabelian, so there is a nontrivial subgroup of order 2 in the

intersection of Z(G) and G′. Set Z to be precisely that subgroup, and now set

Ḡ = G/Z.

Next, set Ḡ′ as the image of G′ under the natural surjective homomorphism
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G → G/Z, and so |Ḡ/Ḡ′| = 4 as well. Since m > 3, it is guaranteed that Ḡ is

nonabelian, because

|Ḡ| = |G|/2 = 2m−1,

and m − 1 ≥ 3. Using the m = 3 case as the base case for induction, it holds then

that Ḡ is isomorphic to one of Dm−1, Qm−1, or Sm−1. Since Ḡ is one of those three

groups, define H̄ to be the maximal cyclic subgroup of Ḡ. Correspondingly, let H in

G be the inverse image of H̄.

If H is cyclic, then by Theorem 3.8(i), G must be isomorphic to one of Mm,

Dm, Qm, or Sm. However, by Theorem 3.5, for any m > 3, if G ∼= Mm:

|G/G′| = 2m−1

> 23−1 = 4,

which contradicts the assumption of this theorem. Thus G is isomorphic to one of

the three desired groups.

Now, we consider the case in which H is not cyclic. Take the center of H, that

is, Z(H). Since H ≤ G, it must be the case that Z(H) contains Z(G), as any element

of Z(G) commutes with all elements of H. Therefore, the above Z is in Z(H). In

addition, as H/Z is cyclic by above, Lemma 3.3 gives that H must be abelian, but it
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is not cyclic. The above statements show that |Z| = 2, and

|H̄| = 2m−2

= |H/Z|

=
|H|
|Z|

which in turn gives that

|H| = 2m−2 · |Z|

= 2m−2 · 2

= 2m−1.

By the fundamental theorem of finite abelian groups, H must be the product of cyclic

groups, and since H/Z is cyclic of order 2m−2, H has a cyclic factor of at least that

order. Since H is not cyclic and of order 2m−1 by the above considerations, it must

be true that

H = 〈x, y | x2m−2

= y2 = e〉.

Once again, out of convenience, we set x2
m−3

= z. Now, consider both the subgroups

f1(H) and Ω1(H); recall that the former is the subgroup of H generated by elements

of exponent 2, and the latter is generated by elements whose order divides 2. Since

m > 3, these two subgroups are given by

Ω1(H) = 〈x2〉

f1(H) = {e, z, y, zy}.
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Now, set X to be the intersection of Ω1(H) and f1(H). Clearly, since y 6∈ Ω1(H),

X = 〈z〉, and X is a characteristic subgroup of H that is normal in G. Therefore,

X ⊂ Z(G), and so X̄ ⊂ Z(Ḡ), where X̄ is understood to be the image of X under

the natural surjective homomorphism.

X̄ is nontrivial in Ḡ, so by Theorem 3.8(ii), X̄ = Z(Ḡ). In addition, Z(Ḡ) ⊂

Ḡ′, so therefore X ⊂ G′. With this, set Ĝ = G/X. Since |X| = 2, once again applying

the induction of earlier, we get that Ĝ is isomorphic to Dm−1, Qm−1, or Sm−1.

By Lemma 3.10, it was shown that no group in the family Dm, Qm, or Sm has

a noncyclic abelian subgroup of order 8 for m > 3. Since x, y form a basis of H, the

image Ĥ of H in Ĝ must be abelian and isomorphic to Z2m−3 × Z2. By the above

considerations, since Ĝ cannot contain a noncyclic abelian subgroup of order 8, the

only possibility is that m = 4.

Assume that is the case. Then, XZ ∼= Z2 × Z2, so |XZ| = 4, and so

|G/XZ| = |G|
|XZ|

=
16

4
= 4.

In addition, XZ ⊂ G′ ∩ Z(G). If XZ were a proper subset of G′ ∩ Z(G), then

|G/Z(G)| ≤ 2, which would imply that G is cyclic. This is a contradiction, as G was

assumed to be nonabelian, so necessarily XZ = Z(G), and so G/Z(G) ∼= Z2 × Z2.

Therefore, for suitable α, β ∈ G, G = 〈Z(G), α, β〉. This can be done because

G/Z(G) must be isomorphic to Z2 × Z2, and so α and β may be taken to be the

preimages of (1, 0) and (0, 1).

From this, it follows that the commutation [α, β] must generate G′, so G′ is
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cyclic. This is a contradiction, as XZ ⊂ G′ by the above considerations, and XZ is

noncyclic. Therefore, it must be concluded that H cannot be noncyclic. Consequently

H, as taken initially, must be cyclic in G. Thus, as was proved above in that case, G

must be isomorphic to one of Dm, Qm, or Sm.

With this proof completed, the results can now be combined with the main

result of the previous chapter to give the main result of this thesis. If G is a finite

nonabelian 2-group that has |G/G′| = 4, then it must be one of the family Dm, Qm, or

Sm. However, if G is any one of these, then G′′ is abelian. Therefore, |G′/G′′| = 2m−2,

and G′′′ is trivial.

Since G′′′ = G3 is trivial, it must be that G has derived length 2. It can then

be concluded that if G is a finite nonabelian 2-group with |G/G′| = 4, then G does

not have derived length 3. In the conclusion of Chapter 2, the proved statement was

that if G is of derived length 3, then |G/G′| ≥ 4 and |G′/G′′| ≥ 8. Since any group

that has |G/G′| = 4 is not of derived length 3, we reformulate the statement to the

one that appears below.

Corollary 3.12. If G is a finite nonabelian 2-group of derived length 3, then |G/G1| ≥

23 and |G1/G2| ≥ 23.

With this established, we have improved the lower bounds on the quotients of

the derived series, and the main goal of this paper is accomplished.
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