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- History of the game creation operator

« Our results
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The Basics

= A two-player game is called a combinatorial game if
there is no randomness involved and all possible moves
are known to each player.

= A combinatorial game is called impartial if both players
have the same allowed moves

= Examples:

]

—~
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= Under normal play, the last player to move wins. Under
miseére play, the last player to move loses.
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Main Question:

Who wins in a combinatorial game from a
specific position, assuming both players play
optimally?

Subtraction Games

- A subtraction or take-away game is played on one or
more stacks of tokens

- Positions are described as vectors of stack heights

- The subtraction set M consists of the possible moves in
the form of subtraction vectors. A move can be used as
long as it does not result in negative stack height(s)

Take one token from stack 1
[ ) ( ) (_)

(5,3,2,1) (1,0,0,0)
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Subtraction Sets

Examples:
- NIM on one stack M={1,23,...}

- WYTHOFF is played on two stacks. Can either take

- one or more tokens from one stack, or
- the same number from both stacks. '

M = {(1,0), (2,0).... , (0,1), (0,2),... , (1,1),(2,2),...}

Impartial Games

Only two possible outcome classes:
- Losing positions
+ Winning positions

Characterization of positions
- From a losing position, all allowed moves lead to a
winning position
- From a winning position, there is at least one move
to a losing position.

- In misére play, the terminal positions are winning
positions
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Recursive Determination of Outcome Class

- Game M= {4, 7, 11}
+ We will color winning and losing positions
- The terminal positions are 0, 1, 2, 3

- Pattern that emerges is an alternating sequence of 4
losing positions followed by 11 winning positions (after
the terminal positions in the beginning)
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Stack height

]
*-Operator

Observation: For subtraction games, positions and
allowed moves have the same structure! This allows us to
iteratively create new games.

The *-operator is defined as follows:

- We start with a subtraction game M that is described by the
allowed moves.

- We compute the set of losing positions, L(M)
- The losing positions of M become the moves for the game
M*
- Notation: M® =M, M" = (M™1)*
- M is reflexive if M = M*
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How did the *-Operator
come about?

]
WYTHOFF

- The losing positions of WYTHOFF (under normal play) are

. 1+\/§
closely related to the golden ratio ¢=——":

£={(ln-¢l,|n-p| +nn >0}

- We only list positions of the form (x,y), but by symmetry,
(y,x) is also a losing position.




Visualization of the Losing Positions

0 0
; ) \ .I
3 5 40+ 5]
[}
4 7 s
6 10 “ = o
[ ]
8 13 S =
9 15 u "
=
1M1 18 2 B .
]
12 20 o m"®
14 23 " .
]
16 26 o ® _m
]
17 28 F) 8
.I
By

I I I I I
0 10 20 30 40 50

Recursive Creation of the Losing Positions

- The losing positions can also be computed recursively.

- Let a,, = the smallest non-negative integer not yet used and
set b= a, + n. Repeat.

- By creation, sequences {a,} and {b,} are complementary, in
fact, they are homogenous Beatty sequences.
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Complementary Beatty Sequences

From American Mathematical Monthly, 33 (3): 159

1926] PROBLEMS AND SOLUTIONS 159

PROBLEMS AND SOLUTIONS
Eprrep By B. F. Finker, Orro Dunker, axp H. L. OLson.

Send all communications about Problems and Solutions to B. F. Finkel, Springfield, Mo. All
ipts should be ty i with double spacing and with a margin at least one inch wide on the
left.

PROBLEMS FOR SOLUTION

(N.B. Problems containing results believed to be new, or extensions of old results are especially
sought. The editorial work would be greatly facilitated if, on sending in problems, proposers would also
enclose any solutions or information that will assist the editors in checking the statements. In general,
problems in well-known textbooks, or results found in readily accessible sources, will not be proposed as
problems for solution in the MoNTHLY. In so far as possible, however, the editors will be glad to assist
members of the Association with their difficulties in the solution of such problems.)

3173. Proposed by Samuel Beatty, University of Toronto.

If X is a positive irrational number and ¥ its reciprocal, prove that the
1+x), 2(14+X) , 3(14X), . - -
(1+7), 2147Y) , 31+1), - - -

contain one and only one number between each pair of consecutive positive integers.

Complementary Beatty Sequences & Games

Duchéne-Rigo Conjecture: Every complementary pair of
homogeneous Beatty sequences forms the set of losing
positions for some invariant impartial game.

This conjecture was proved by Larsson, Hegarty and
Fraenkel using the game creation operator (*-operator)
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Back to the *-Operator

Questions for Misere-Play *-Operator

- Question 1: Does the misére-play *-operator converge
(point-wise)?

- Question 2: What feature(s) of M determines the limit
game for its sequence?

- Question 3: Limit games are (by definition) reflexive.
What is the structure of reflexive games and/or limit
games (if they exist)?

- Question 4: How quickly does convergence occur?




Example for One Stack

*-operator applied five times to initial game

4 eeee ocoe oooe oooe eoe 4 4l eeee
3 eeee eoce Y M3 3l eeee
2l eeee eooe eooe sese M2 2l eeee

11 esee eoce eeoe o M1 11 eeee

L L L L L L L L L L
10 20 30 40 50 M 0 10 20 30 40 50

MO ={4,7, 11} G° = {4, 9}

Observations from Example

- Looks like there is convergence (fixed point) for each of
the games

- Limit games seem to have a periodic structure: blocks of
moves alternate with blocks of non-moves

- M0={4,7, 11} and G°= {4, 9} seem to have the same limit
game

Question: What do the two sets M? and G° have in
common?

Answer: The minimal element, k = 4.
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Q1: Convergence Result

Convergence Result

Proof idea: (for d stacks)

- Positions become fixed either as moves or non-moves
from “smaller to larger”. There are four possibilities:

move in M+ Non-move in Mi*1

move in Mi

Non-move in Mi

- Show that smallest element not yet fixed becomes fixed.

11
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Proof by Picture

5 eeee oooe oooe e o0

41+ 0000 0000 0000 L... 000

3t eeee o0 Looo MO ={4,7,11}
2| 0000 L... 0000 0000

1 +oo o000 o000 '

‘iL'*'{o*' N, w0 '14'0' %

| | |
x=5 x=15 x =26 x =38

Proof by Picture

- Not all positions switch from non-move to move:

5 eese svse ssse (T ) coo
4 oese esse esee seee o0
3 esee ssse 0000 esee L)
2l osee ® ° °
1 esee @ es0e o oese o  osee
'
10 20 30 40 50
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Q2: Which Feature of M Determines M~ ?
]

Q3: Characteristic of Reflexive Games

» The following result is somewhat technical, but it is a
general result for games on any number of stacks.

* |tis used to prove specific results for one and two
stacks.

13



Structure of Reflexive Games on One Stack

Pattern:
s|  eese ssse ssse oo oso » period 3k-1;
+ startsatk
4 osne esee esee soes Lo ¢ has k moves,
I followed by 2k-1
10 20 30 40 50 non-moves.

Mc={ip.*tk ...,ip+(2k-1)]i=0,1,...}, where p, = 3k-1

Structure of Limit/Reflexive Games on Two Stacks

Classification of games according to minimal moves

@ Exactly one minimal move
a. Noton an axis
b.  On one of the axes

@ Exactly two minimal moves
a.  No minimal move on an axis
b. Exactly one move is on an axis
c. Both moves are on the axes

3 Three or more minimal moves
a. No minimal move on an axis
b. Exactly one move is on an axis
c. Two moves are on the axes

3/3/17

14



3/3/17

Exactly one minimum not on axis
Example: M = {(3,8)}

M1 M2 = M3

Exactly one minimum not on axis

M= {(3.8)} Anchored at (k,)) = (3,8)
x| HH Vertical width is | = 8

Horizontal width is k = 3

15



Exactly one minimum on axis

Example: M={4,0}; shown is sequence M'to M= M®

Exactly one minimum on axis

M ={(4,0)} 5 sone 000 o000 seee oo

Anchored at (k,l) = (6,0) 4 ®**® ooce oves soes

s F R

Period = p, = 3k-1 =17
This case inherits its structure from the one-stack case.

3/3/17
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Example: Two Minima on Axes
T
70 I -----------------------------

L

30 I

Definition of Game Mj,k

3/3/17
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Reflexivity of M,

Q4: How Long until Convergence?

- We can only answer this question for specific initial games

Proof: We explicitly derive the games M' through M5.

- For other games on two stacks we have very varied results
from our computer explorations

3/3/17
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Future Work

1. Investigate the structure of the limit games in the other
classes for games on two stacks

2. Computer experiments for three minimal elements have
produced “L-shaped” limit games, limit games with
diagonal stripes, and limit games that combine the two
features

Three+ Minimal Moves — None on Axis

M={(2.9), (3,7), (4.4), (5,.2), (8,1)}
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Convergence after 2 steps!
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Three Minimal Moves — Two on Axes

M ={(0,5), (1,1), (5,0)}

30 40 50 60

Convergence after 8 steps!

60

504

40

30

20

Three minimal moves — two on axes

M ={(0,5), (2,2), (5,0)}

60 B
50

T T y J 0 10 20 30 40 50 60
30 40 50 60

Convergence after 7 steps!
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Three Minimal Moves — Two on Axes

M ={(0,5), (3,3), (5,0)}

A T
0 10 20

3b 40 50 60 0 10 20 30 40 50 60

Convergence after 7 steps!

Three Minimal Moves — Two on Axes

60

50

40

30

20

M ={(0,5), (4,4), (5,0)}

30 40 50 60

Convergence after 6 steps!

3/3/17
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Future Work

1. Investigate the structure of the limit games in the other
classes for games on two stacks

2. We have observed “L-shaped” limit games, limit games
with diagonal stripes, and limit games that combine the
two features

3. Number of steps to convergence, or showing that it
happens in a finite number of steps for all games or for
games of a particular (sub-) class

]
Future Work

22
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