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Outline 
• Basic background on combinatorial games 
• Definition of subtraction games  
• Some examples: Nim, Wythoff 
• History of the game creation operator 
• Our results 
•  Future work 

The Basics 
 A two-player game is called a combinatorial game if 

there is no randomness involved and all possible moves 
are known to each player. 

 A combinatorial game is called impartial if both players 
have the same allowed moves 

 Examples: 

 Under normal play, the last player to move wins. Under 
misère play, the last player to move loses. 
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Main Question: 

Who wins in a combinatorial game from a 
specific position, assuming both players play 
optimally?  
 
 

Subtraction Games 
• A subtraction or take-away game is played on one or 

more stacks of tokens  
• Positions are described as vectors of stack heights 
•  The subtraction set M consists of the possible moves in 

the form of subtraction vectors. A move can be used as 
long as it does not result in negative stack height(s)  

(5, 3, 2, 1) 

Take one token from stack 1                
 
            (1, 0, 0, 0) 

!
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Subtraction Sets 
Examples:  
• NIM on one stack  

• WYTHOFF is played on two stacks. Can either take  
•  one or more tokens from one stack, or  
•  the same number from both stacks.  

         

M = {1, 2, 3, …} 

M = {(1,0), (2,0),… , (0,1), (0,2),… , (1,1),(2,2),…} 

Impartial Games 
Only two possible outcome classes: 

• Losing positions  
• Winning positions 
 

Characterization of positions 
• From a  losing position, all allowed moves lead to a 

winning position 
• From a winning position, there is at least one move 

to a losing position. 
•  In misère play, the terminal positions are winning 

positions 
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Recursive Determination of Outcome Class 

• Game M= {4, 7, 11} 
• We will color winning and losing positions 
•  The terminal positions are 0, 1, 2, 3 
• Pattern that emerges is an alternating sequence of 4 

losing positions followed by 11 winning positions (after 
the terminal positions in the beginning) 

Stack height 

0   1   2   3 4   5   6 7 8  9  10  11 12 13 14 15 16 17 18   19 20 21 22 23 24 ..  

★-Operator 
Observation: For subtraction games, positions and 
allowed moves have the same structure! This allows us to  
iteratively create new games. 

The ★-operator is defined as follows: 
•  We start with a subtraction game M that is described by the 

allowed moves.  
•  We compute the set of losing positions, L(M) 
•  The losing positions of M become the moves for the game 

M★ 

• Notation: M0 = M, Mn = (Mn-1)★ 

• M is reflexive if  M = M★ 
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How did the ★-Operator  
come about?  

WYTHOFF 

•  The losing positions of WYTHOFF (under normal play) are 

closely related to the golden ratio                 : 
 
 
 
• We only list positions of the form (x,y), but by symmetry, 

(y,x) is also a losing position. 
 

 
! = 1+ 5

2
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Visualization of the Losing Positions 
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0 0 

1 2 

3 5 

4 7 

6 10 

8 13 

9 15 

11 18 

12 20 

14 23 

16 26 

17 28 

Recursive Creation of the Losing Positions 

•  The losing positions can also be computed recursively. 
 
 
 
 
 
•  Let an = the smallest non-negative integer not yet used and 

set bn= an + n. Repeat. 
• By creation, sequences {an} and {bn} are complementary, in 

fact, they are homogenous Beatty sequences. 
 

n 0 1 2 3 4 5 6 7 
an 
bn 

n 0 1 2 3 4 5 6 7 
an 0 
bn 

n 0 1 2 3 4 5 6 7 
an 0 
bn 0 

n 0 1 2 3 4 5 6 7 
an 0 1 
bn 0 

n 0 1 2 3 4 5 6 7 
an 0 1 
bn 0 2 

n 0 1 2 3 4 5 6 7 
an 0 1 3 
bn 0 2 

n 0 1 2 3 4 5 6 7 
an 0 1 3 
bn 0 2 5 

n 0 1 2 3 4 5 6 7 
an 0 1 3 4 
bn 0 2 5 7 

n 0 1 2 3 4 5 6 7 
an 0 1 3 4 6 
bn 0 2 5 7 10 

n 0 1 2 3 4 5 6 7 
an 0 1 3 4 6 8 9 11 
bn 0 2 5 7 10 13 15 18 
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Complementary Beatty Sequences 
From American Mathematical Monthly, 33 (3): 159 

Complementary Beatty Sequences & Games 

Duchêne-Rigo Conjecture: Every complementary pair of 
homogeneous Beatty sequences forms the set of losing 
positions for some invariant impartial game. 
 
 
 
This conjecture was proved by Larsson, Hegarty and 
Fraenkel using the game creation operator (★-operator) 
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Back to the ★-Operator  

Questions for Misère-Play ★-Operator 

• Question 1: Does the misère-play ★-operator converge 
(point-wise)? 

• Question 2: What feature(s) of M determines the limit 
game for its sequence?  

• Question 3: Limit games are (by definition) reflexive. 
What is the structure of reflexive games and/or limit 
games (if they exist)?  

• Question 4: How quickly does convergence occur?  
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Example for One Stack!

M0 = {4, 7, 11} G0 = {4, 9} 

M0 

M2 

M3 

M4 

M5 

M1 

★-operator applied five times to initial game 

Observations from Example 
•  Looks like there is convergence (fixed point) for each of 

the games 
•  Limit games seem to have a periodic structure: blocks of 

moves alternate with blocks of non-moves 
• M0 = {4, 7, 11} and G0 = {4, 9} seem to have the same limit 

game 

Question: What do the two sets M0 and G0 have in 
common? 
 
Answer: The minimal element, k = 4.  



3/3/17	  

11	  

Q1: Convergence Result  

Theorem  
Starting from any game M on d stacks, the sequence of 
games created by the misère-play ★-operator converges 
to a (reflexive) limit game M∞. 

Convergence Result  

Proof idea: (for d stacks) 
• Positions become fixed either as moves or non-moves 

from “smaller to larger”. There are four possibilities: 
 
 
 
 
 
• Show that smallest element not yet fixed becomes fixed. 

       move in Mi+1 Non-move in Mi+1 

move in Mi Fixed as a move Erased as move 

Non-move in  Mi Introduced as move Fixed as non-move 
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Proof by Picture 

M0 = {4, 7, 11} 

x = 5 x = 15 x = 26 x = 38 

Proof by Picture 
• Not all positions switch from non-move to move: 
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Q2: Which Feature of M Determines M∞ ?   

Theorem 
Two games M and G (played on the same number of 
stacks) have the same limit game if and only if their unique 
sets of minimal elements (with the usual partial order) are 
the same.  
 
 

Q3: Characteristic of Reflexive Games 

Theorem  
The game A on d  stacks is reflexive if and only if its set of 
moves A (as a set) satisfies  
 

 A + A = Ac \ TA 
 

where TA is the set of terminal positions of the game A. 
 

•  The following result is somewhat technical, but it is a 
general result for games on any number of stacks.  

•  It is used to prove specific results for one and two 
stacks.  
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Structure of Reflexive Games on One Stack 
 
 
 
 

!

Mk:= { i pk + k, …, i pk + (2k – 1)| i = 0,1,…}, where pk = 3k-1 
 
 

   Theorem 
The game M is reflexive iff M = Mk  for some k > 0. 

Pattern:  
•  period 3k-1;  
•  starts at k  
•  has k moves, 

followed by 2k-1 
non-moves.  

Structure of Limit/Reflexive Games on Two Stacks 

Classification of games according to minimal moves 
①  Exactly one minimal move 

a.  Not on an axis 
b.  On one of the axes 

②  Exactly two minimal moves 
a.  No minimal move on an axis 
b.  Exactly one move is on an axis 
c.  Both moves are on the axes 

③  Three or more minimal moves 
a.  No minimal move on an axis 
b.  Exactly one move is on an axis 
c.  Two moves are on the axes 



3/3/17	  

15	  

Exactly one minimum not on axis  
Example: M = {(3,8)} 
 

 M1 M2 = M3 

Exactly one minimum not on axis  

Theorem [Bloomfield] 
If min(M) = {(k,l)}, then the limit game is reached in two 
steps, and is in the form of an L anchored at (k,l)  with 
vertical width l and horizontal width k. 

M= {(3,8)} Anchored at (k,l) = (3,8) 
Vertical width is l = 8 
Horizontal width is k = 3 
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Exactly one minimum on axis  
Example: M={4,0}; shown is sequence M1 to M5 = M6 
 
 

Exactly one minimum on axis  

Theorem [Bloomfield] 
If min(M) = {(k,0)} the limit game has the form of vertical 
bands of width k, with a period of pk, so M∞ ={(x,y), x in Mk}.  

M = {(4,0)} 

This case inherits its structure from the one-stack case. 

Anchored at (k,l) = (6,0) 
Bands of width k 
Period = pk = 3k-1 = 17 
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Example: Two Minima on Axes 

Definition of Game Mj,k  

(j,0) 

(0,k) 

pk 

pj 
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Reflexivity of Mj,k  

Corollary  
The limit game of a set M equals the game Mj,k if and only 
if the set of minimal elements of M is {(j,0),(0,k)}. 

Theorem [Bloomfield, Dufour, Heubach, Larsson] 
The game Mj,k is reflexive. 

Q4: How Long until Convergence? 
•  We can only answer this question for specific initial games 
 
 
 
 
 
 
 
 
 
Proof: We explicitly derive the games M1 through M5. 
 
•  For other games on two stacks we have very varied results 

from our computer explorations 
 

Theorem  
For M = {k} with k > 1 it takes exactly 5 iterations for the limit 
game to appear for the first time. 

Corollary  
For M = {(k,0}} or  M = {(0,l}}  with k,l > 1 it takes exactly 5 
iterations for the limit game to appear for the first time. 
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Future Work 

1.  Investigate the structure of the limit games in the other 
classes for games on two stacks 

2.  Computer experiments for three minimal elements have 
produced “L-shaped” limit games, limit games with 
diagonal stripes, and limit games that combine the two 
features 

Three+ Minimal Moves – None on Axis 

M = {(2,9), (3,7), (4,4), (5,2), (8,1)} 

Convergence after 2 steps! 
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Three Minimal Moves – Two on Axes 
M = {(0,5), (1,1), (5,0)} 

Convergence after 8 steps! 

Three minimal moves – two on axes 
M = {(0,5), (2,2), (5,0)} 

Convergence after 7 steps! 
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Three Minimal Moves – Two on Axes 
M = {(0,5), (3,3), (5,0)} 

Convergence after 7 steps! 

Three Minimal Moves – Two on Axes 
M = {(0,5), (4,4), (5,0)} 

Convergence after 6 steps! 
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Future Work 
1.  Investigate the structure of the limit games in the other 

classes for games on two stacks 

2.  We have observed “L-shaped” limit games, limit games 
with diagonal stripes, and limit games that combine the 
two features 

3.  Number of steps to convergence, or showing that it 
happens in a finite number of steps for all games or for 
games of a particular (sub-) class 

 

Future Work 

Conjecture  
For all subtraction 
games on two stacks, 
limit games under the 
misère *-operator are 
ultimately periodic 
along any line of 
rational slope. 
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