California State University - Los Angeles

Department of Mathematics

Master's Degree Comprehensive Examination

Analysis Fall 2022

Da Silva, Krebs*, Zhong

Do at least five of the following seven problems. All problems count equally. If you attempt more than five, the best five will be used.
(1) Write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.
(2) Write on one side of the paper only.
(3) Begin each problem on a new page.
(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

SECTION 1 - Do two (2) problems from this section. If you attempt all three, then the best two will be used for your grade.

Fall 2022 \#1. Consider the sequence defined by $x_{0}=1$ and

$$
x_{n+1}=1+\frac{1}{x_{n}}
$$

for all integers $n \geq 0$.
(a) Show that the sequence satisfies

$$
1 \leq x_{n} \leq 2
$$

for all non-negative integers n.
(b) Prove that $\left(x_{n}\right)$ has a convergent subsequence $\left(x_{n_{k}}\right)$. Hint: Use your answer from (a).

Fall $2022 \#$ 2. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers.
(a) Define what it means for $\left(x_{n}\right)_{n=1}^{\infty}$ to be a "Cauchy sequence."
(b) Use your answer from (a) to prove that if $\left(x_{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence, then $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is bounded. (Here \mathbb{N} denotes the set of positive integers.)

Fall $2022 \# 3$.
Let $f: D \rightarrow \mathbb{R}$ be a continuous function on an open interval D. Prove that the function $f_{+}: D \rightarrow \mathbb{R}$ defined by

$$
f_{+}(x)=\max \{f(x), 0\}
$$

is continuous.

SECTION 2 - Do three (3) problems from this section. If you attempt more than three, then the best three will be used for your grade.

Fall $2022 \# 4$. Let $T: C([0,1]) \rightarrow \mathbb{R}$ be the bounded linear transformation defined by

$$
T(f)=\int_{0}^{1} f(x) d x
$$

Here $C([0,1])$ denotes the space of continuous functions from $[0,1]$ to \mathbb{R}. We endow $C([0,1])$ with the L^{∞} norm defined by

$$
\|f\|_{\infty}=\sup \{|f(x)|: 0 \leq x \leq 1\}
$$

(a) Show that $\|T\| \leq 1$.
(b) If $g \in C([0,1])$ is defined by $g(x)=1$, find $|T(g)|$, and use this to compute $\|T\|$.

Fall 2022 \#5. Define

$$
\ell^{2}(\mathbb{N} ; \mathbb{R}):=\left\{\left(x_{n}\right)_{n=1}^{\infty} \mid x_{1}, x_{2}, x_{3}, \cdots \in \mathbb{R} \text { and } \sum_{n=1}^{\infty} x_{n}^{2}<\infty\right\} .
$$

In other words, $\ell^{2}(\mathbb{N} ; \mathbb{R})$ is the set of all "square-summable" sequences of real numbers. Recall that $\ell^{2}(\mathbb{N} ; \mathbb{R})$ is an inner product space with the inner product

$$
\left\langle\left(x_{n}\right)_{n=1}^{\infty},\left(y_{n}\right)_{n=1}^{\infty}\right\rangle=\sum_{n=1}^{\infty} x_{n} y_{n}
$$

(You may assume without proof that this defines an inner product.)
Define

$$
r_{n}= \begin{cases}2^{-(n+3) / 4} & \text { if } n \text { is odd } \\ 2^{-(n+2) / 4} & \text { if } n \text { is even }\end{cases}
$$

and $s_{n}=(-1)^{n} r_{n}$. So

$$
\begin{gathered}
\left(r_{n}\right)_{n=1}^{\infty}=\left(2^{-1}, 2^{-1}, 2^{-3 / 2}, 2^{-3 / 2}, 2^{-2}, 2^{-2}, 2^{-5 / 2}, 2^{-5 / 2}, \ldots\right), \text { and } \\
\left(s_{n}\right)_{n=1}^{\infty}=\left(2^{-1},-2^{-1}, 2^{-3 / 2},-2^{-3 / 2}, 2^{-2},-2^{-2}, 2^{-5 / 2},-2^{-5 / 2}, \ldots\right) .
\end{gathered}
$$

(a) Prove that $\left(r_{n}\right)_{n=1}^{\infty} \in \ell^{2}(\mathbb{N} ; \mathbb{R})$ and $\left(s_{n}\right)_{n=1}^{\infty} \in \ell^{2}(\mathbb{N} ; \mathbb{R})$. (Recall the geometric series formula: If x is a real number such that $-1<x<1$, then $\sum_{n=1}^{\infty} x^{n}=\frac{x}{1-x}$.)
(b) Prove that $\left\{\left(r_{n}\right)_{n=1}^{\infty},\left(s_{n}\right)_{n=1}^{\infty}\right\}$ is an orthonormal family in $\ell^{2}(\mathbb{N} ; \mathbb{R})$.
(c) Find real numbers a and b so that the quantity $J(a, b)$ below is as small as possible.

$$
J(a, b)=\sum_{n=1}^{\infty}\left(2^{-n}-a r_{n}-b s_{n}\right)^{2} .
$$

Fall $2022 \#$ 6. Let V be a normed vector space over \mathbb{F}, where \mathbb{F} may be either the field of real numbers or the field of complex numbers. Let A be a linear subspace of V. Let C be the set of all $x \in V$ such that there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in A converging to x. (In other words, C is the closure of A.) Prove that C is a linear subspace of V.

Fall $2022 \#$. Let $f(x)=x(\pi-x)$ for $x \in(0, \pi)$.
(a) Extend the function f to the interval $(-\pi, \pi)$ such that it becomes an odd function. Please write down the expression of the extended function $F(x)$ on $(-\pi, \pi)$.
(b) We extend $F(x)$ from Part (a) to be 2π-periodic on \mathbb{R}. Find the Fourier series for $F(x)$ in the trigonometric form.
(c) Use the result of Part (b) to find the value of the infinite series

$$
1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\frac{1}{9^{3}}-\cdots
$$

