
Groups

1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A ⊆ B. If A∩C = B∩C
and AC = BC then prove that A = B.

Answer: Let b ∈ B. Since b = b1 ∈ BC = AC, there are a ∈ A and c ∈ C such that b = ac. Since
a−1 ∈ A ⊆ B, we have c = a−1b ∈ B, and so c ∈ B ∩ C = A ∩ C. This implies that c ∈ A and hence
b = ac ∈ A. We have shown that all elements of B are in A and so A = B. Note that the claim is true
even if the subgroups are not normal.

2. (Algebra Comp S03) Let G be a finite group with identity e, and such that for some fixed integer
n > 1, (xy)n = xnyn for all x, y ∈ G. Let Gn = {z ∈ G : zn = e} and Gn = {xn : x ∈ G}. Prove that
both Gn, and Gn are normal subgroups of G and that |Gn| = [G : Gn].

Answer: Define φ : G→ G by φ(x) = xn for all x ∈ G. φ is a homomorphism because

φ(xy) = (xy)n = xnyn = φ(x)φ(y)

for all x, y ∈ G. The kernel of φ is Gn and the image is Gn. This makes Gn a normal subgroup of G,
Gn a subgroup of G and G/Gn ∼= Gn, in particular, |Gn| = [G : Gn].

It remains only to check that the subgroup Gn is normal. This follows from the equation

φ(yxy−1) = (yxy−1)n = (yxy−1)(yxy−1)(yxy−1) · · · (yxy−1)︸ ︷︷ ︸
n times

= yxny−1 = yφ(x)y−1.

So, if a ∈ Gn, then a = φ(x) for some x ∈ G and, for all y ∈ G we have yay−1 = yφ(x)y−1 =
φ(yxy−1) ∈ Gn.

3. (Algebra Comp S03) Prove:

(a) A group of order 45 is abelian.

(b) A group of order 275 is solvable.

Answer: See F13 and S09.

4. (Algebra Comp F03) Let G be an abelian group of order pq with p and q distinct primes. Show that
G is cyclic. (Don’t use the Classification Theorem of Finitely Generated Abelian Groups.)

Answer: By Sylow (or Cauchy), G contains a subgroup of order p and hence an element a of order p.
Similarly G contains an element b of order q. We now solve the equation (ab)n = 1 for n. Since a and
b commute we have 1 = 1p = ((ab)n)p = anpbnp = bnp. Since b has order q, this implies that q divides
np, and since p 6= q, that q divides n. Similarly, p divides n and since p 6= q, pq divides n. Since the
order of ab also divides |G| = pq, we have |ab| = pq and G = 〈ab〉.

5. (Algebra Comp F03) Show that all groups of order 32 · 112 are solvable.

Answer: Let G be a group of order 32 · 112. By Sylow, n11 divides 32 · 112 and n11 is congruent to 1
modulo 11. The only number satisfying these conditions is n11 = 1, and so G has a normal subgroup
N of order 112. Since N has prime square order, N is abelian, and G/N has order 32 so is also abelian
for the same reason. This means that G is solvable.

6. (Algebra Comp F03) Let G be a p-group and N E G, a normal subgroup of order p. Prove that N is
in the center of G.

Answer: Since N is normal, it is a union of conjugacy classes of G. Such a conjugacy class has either
one element, in which case the element is in Z(G), or has a multiple of p elements. Since |N | = p, it
must be a union of one-element conjugacy classes. Since an element is in Z(G) if and only if it forms
a one-element conjugacy class, we have N ≤ Z(G).



7. (Algebra Comp F04) Let H and N be subgroups of a finite group G, N normal in G. Suppose that
|G : N | is finite and |H| is finite, and gcd(|G : N |, |H|) = 1. Prove that H ≤ N .

Answer: Let φ : H → G/N be the restriction of the natural homomorphism G → G/N . Since
H/ kerφ ∼= φ(H) ≤ G/N , the order of φ(H) divides both |H| and |G/N | = |G : N |. But gcd(|G :
N |, |H|) = 1, and so |φ(H)| = 1, and φ(H) is the trivial subgroup of G/N . In other words H is
contained in the kernel of φ, namely H ∩N . Hence H ≤ N .

8. (Algebra Comp F04) Assume |G| = p3 with p a prime.

(a) Show |Z(G)| > 1.

(b) Prove that if G is nonabelian, then |Z(G)| = p.

Answer:

(a) Dummit and Foote, Theorem 8, page 125.

(b) Since |G| = p3, the order of Z(G) is 1, p, p2 or p3. The case |Z(G)| = 1 is eliminated by (a).
If |Z(G)| = p3, then G is abelian, contrary to assumption. If |Z(G)| = p2, then G/Z(G) is a
cyclic group of order p. This would imply that G is abelian once again (see Algebra Comp F12),
contrary to assumption. Thus we are left with |Z(G)| = p.

9. (Algebra Comp F04) Let P be a Sylow p-subgroup of G. Assume that P E N E G. Show that P E G.

Answer: Suppose that |G| = pkm with m, k ∈ N and p - m. Then any subgroup of order pk is a Sylow
p-subgroup of G. In particular, |P | = pk. Since P E N E G, the order of N is a multiple of pk and a
divisor of pkm. Thus |N | = pkl where l|m. This means that any subgroup of N of order pk is a Sylow
p-subgroup of N . In particular, P is a Sylow p-subgroup of N . In fact, since P E N , P is the only
Sylow p-subgroup of N . (The set of Sylow p-subgroups forms a conjugacy class. Since P E N , P is
conjugate only to itself (with respect to conjugation by elements of N).)

Now let g ∈ G. Then gPg−1 is a subgroup that is isomorphic to P , so has order pk. Moreover, ,
because N is normal, gPg−1 ⊆ gNg−1 = N . So gPg−1 is a subgroup of N with order pk, that is, a
Sylow p-subgroup of N . But there is only one such subgroup, namely P . So gPg−1 = P for all g ∈ G,
which means P E G.

10. (Algebra Comp S05) Let G be an abelian group, H = {a2 | a ∈ G} and K = {a ∈ G | a2 = 1}. Prove
that H ∼= G/K.

Answer: Let φ : G→ G be defined by φ(a) = a2 for all a ∈ G. Since G is abelian, φ is a homomorphism:
φ(ab) = (ab)2 = a2b2 = φ(a)φ(b) for all a, b ∈ G. Since kerφ = K and φ(G) = H, we have G/K ∼= H.

11. (Algebra Comp S05) Assume G = HZ(G), where H is a subgroup of G and Z(G) is the center of G.
Show:

(a) Z(H) = H ∩ Z(G)

(b) G′ = H ′ (Where G′ is the commutator group of G)

(c) G/Z(G) ∼= H/Z(H)

Answer:

(a) Any element of H that is in Z(G) commutes with all elements of G, so commutes with all elements
of H. In other words, H ∩ Z(G) ⊆ Z(H). On the other hand, if h ∈ Z(H) then h ∈ H and h
commutes with all elements of H and Z(G). Thus h commutes with all elements of HZ(G) = G.
Thus Z(H) ⊆ H ∩ Z(G).
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(b) Since H ≤ G, we have H ′ ≤ G′. To show the opposite inclusion, it suffices to show that the
generators of G′ are in H ′. Let x, y ∈ G. Then x = h1z1 and y = h2z2 for some h1, h2 ∈ H and
z1, z2 ∈ Z(G). Then

xyx−1y−1 = h1z1h2z2z
−1
1 h−11 z−12 h−12 = h1h2h

−1
1 h−12 ∈ H ′.

(c) Define φ : H → G/Z(G) by φ(h) = hZ(G) for all h ∈ H. Since φ is the restriction of the natural
homomorphism G → G/Z(G), φ is a homomorphism. The image of φ is G/Z(G) and the kernel
is

kerφ = {h ∈ H | h ∈ Z(G)} = H ∩ Z(G) = Z(H).

Hence H/Z(H) ∼= H/ kerφ ∼= φ(H) = G/Z(G).

12. (Algebra Comp S05) Prove:

(a) A group of order 80 need not be abelian (twice) by exhibiting two non-isomorphic non-abelian
groups of order 80 (with verification).

(b) A group of order 80 must be solvable.

Answer:

(a) It is easy to construct nonabelian groups of order 80. For example: D80, D40 × Z2, D8 × Z10,
D8 × Z5 × Z2, etc. The first two are nonisomorphic, for example, because D80 has elements of
order 40 whereas all elements of D40 × Z2 have order 20 or less.

(b) We need a few facts:

• If N E G with N and G/N solvable, then G is solvable.

• All abelian groups are solvable.

• All p-groups are solvable. Proof: Induction on k ∈ N where |P | = pk. P has a nontrivial
normal abelian subgroup, namely, Z(P ). The quotient P/Z(P ) has order pk−1 so is solvable
by induction hypothesis. Hence P is solvable.

Now suppose |G| = 80. By the Sylow Theorems, n5 = 1, 16. We consider two cases:

• Suppose that n5 = 1. Then G has a normal subgroup N of order 5. N is abelian and G/N
has order 16 so is solvable as above. This makes G solvable.

• Suppose that n5 = 16 and n2 = 5. Then, as usual, there are 16 · 4 = 64 elements of order 5.
But this leaves only 16 elements of G for the Sylow 2-subgroups, each having order 16. Thus
n2 = 1 and G has a normal subgroup N of order 16 = 24. This subgroup is solvable as above.
The quotient G/N has order 5 so is abelian. This makes G solvable.

13. (Algebra Comp F05) Let G be a group of order 242. Prove that G contains a nontrivial normal abelian
subgroup H.

Answer: 242 = 2 · 112. By Sylow, n11 = 1 so G contains a unique normal subgroup H of order 112.
Since H has prime squared order H is abelian.

14. (Algebra Comp S06) Let G be a group, and N a normal subgroup of G such that

(a) N 6= G

(b) If S is a subgroup of G and N ⊆ S, then S = N or S = G.

Show that G/N is cyclic of prime order.

Answer: Let π : G → G/N be the natural homomorphism with kerπ = N . Suppose that H ≤ G/N .
Then π−1(H) = {g ∈ G | π(g) ∈ H} is a subgroup of G that contains N . By (b), π−1(H) = N or
π−1(H) = G. In the first case, H is the trivial subgroup of G/N ; in the second case H = G/N . Thus
the only subgroups of G/N are the trivial subgroup and G/N .
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To complete the proof we show that if K is a nontrivial group with the property that its only subgroups
are {1} and K, then K is cyclic of prime order. Since K is nontrivial, there is some element 1 6= a ∈ K.
By construction the subgroup 〈a〉 is nontrivial and so 〈a〉 = K. Now K is a cyclic group and so K ∼= Z
or K ∼= Zn for some n ∈ N. But Z has infinitely many subgroups, and Zn has as many subgroups as
n has positive divisors. So we must have K ∼= Zn with n ∈ N having exactly two positive divisors. Of
course this means that n is prime.

15. (Algebra Comp S06)

(a) Identify a group of order 60 that is not solvable (You do not need to prove this).

(b) Identify two groups of order 60 that are nonisomorphic, nonabelian, and solvable and verify that
they do meet this criteria.

Answer:

(a) Of course, A5 is the answer. A5 is simple and not abelian, so can’t be solvable.

(b) Some groups of this type:
S3 × Z10 D12 × Z5 D10 × S3

D10 × Z6 D30 × Z2 D20 × Z3

To show that these are solvable groups you need to know that

{(1, 1)} E H × {1} E H ×K

for any groups H and K. To show that two of these groups are not isomorphic, you could
calculate the numbers of elements of some particular order in each using |(h, k)| = lcm(|h|, |k|)
for (h, k) ∈ H × K. For example, D12 × Z5 contains 8 elements of order 30, whereas D10 × S3

contains no elements of order 30.

16. (Algebra Comp F06) Let G be a group of order 175 = 52 · 7. Show that G is abelian.

Answer: By Sylow, n5 divides 175 and n5 is congruent to 1 modulo 5. The only number satisfying
these conditions is n5 = 1, and so G has a normal subgroup H of order 52. Similarly, n7 divides 175
and n7 is congruent to 1 modulo 7. The only number satisfying these conditions is n7 = 1, and so G
has a normal subgroup K of order 7. By the usual argument, H ∩K = {1}, and G = HK ∼= H ×K.
But, H has prime square order so is abelian, and K has prime order so is cyclic and abelian, and so G
is abelian. In fact, either G ∼= Z25 × Z7 or G ∼= Z5 × Z5 × Z7.

17. (Algebra Comp F06) Let G be a group and G′ its commutator subgroup. Show that, if G = G′, then
any homomorphism from G to Z is trivial.

Answer: Let φ : G → Z be a homomorphism. Then G/ kerφ ∼= φ(G) ≤ Z. Since any subgroup of an
abelian group is abelian, G/ kerφ is abelian. By NEED REF, G′ ≤ kerφ ≤ G. Since G′ = G, this
implies that kerφ = G, that is, φ(g) = 0 for all g ∈ G and φ is trivial.

18. (Algebra Comp S07) Show that any group of order 441 has a normal subgroup of order 49.

Answer: Let G be a group of order 441 = 32 · 72. By Sylow, n7 divides 441 and n7 is congruent to 1
modulo 7. The only number satisfying these conditions is n7 = 1, and so G has a normal subgroup of
order 72.

19. (Algebra Comp S07) Let φ : G → H be group homomorphism where G and H are finite groups such
that the order of G and the order of H are relatively prime. Show that φ is trivial. (That is, show
that φ(g) = eH for all g ∈ G where eH is the identity element of H.)
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Answer: Let n = |G| and m = |H|. Since gcd(m,n) = 1, there are integers x, y such that nx+my = 1.
Let g ∈ G. Then, by a corollary to Lagrange’s theorem, gn = eG and (φ(g))m = eH . Now, using the
fact that φ is a homomorphism, we get

φ(g) = φ(g1) = φ(gnx+my) = φ(gnxgmy)

= φ(gnx)φ(gmy) = φ(gn)x(φ(g)m)y = φ(eG)eH = eH .

20. (Algebra Comp S07) Suppose that G is a group of order pn where p is prime and n ∈ N. Prove that,
if the center of G has order p, then G contains no more than pn−1 + p− 1 conjugacy classes.

Answer: Since |Z(G)| = p, G has exactly p one-element conjugacy classes. All other conjugacy classes
contain at least p elements. Since the union of these conjugacy classes contains pn − p elements, there
can be at most pn−1 − 1 of these conjugacy classes. Thus G can have at most pn−1 − 1 + p conjugacy
classes in total.

21. (Algebra Comp F07) Let G be a group of order 147. Prove that G contains a nontrivial normal abelian
subgroup.

Answer: Note that 147 = 3 · 72. The number of Sylow 7-subgroups, n7, satisfies n7|147 and n7 ≡ 1
mod 7, and so n7 = 1. Thus G has a unique normal Sylow 7-subgroup of order 72. Any group of prime
squared order is abelian, so we are done.

22. (Algebra Comp F07) Let p be a prime and assume G is a finite p-group.

(a) Show that the center of G is nontrivial (i.e. Z(G) 6= {e}).
(b) Let K be a normal subgroup of G of order p. Show that K ⊆ Z(G).

Answer:

(a) Dummit and Foote, Theorem 8, p. 125.

(b) Since K is normal, K is a union of congruence classes. The size of any congruence class must
divide the order of G so is 1, p, p2, etc. Because {1} is a congruence class in K, and K has only
p elements, all congruence classes in K must have one element. Elements that form one element
congruence classes are in the center of G. Thus K ⊆ Z(G).

Rings

1. (Algebra Comp S01) Let R be a ring with identity and assume that x ∈ R has a right inverse. Prove
that the following are equivalent:

(a) x has more than one right inverse.

(b) x is not a unit.

(c) x is a left zero divisor.

Answer: If R = {0} is the trivial ring with 1 = 0. Then (a), (b), and (c) are all false for x = 0 = 1,
and the equivalence of these conditions is true. Otherwise, we have a ring in which 1 6= 0. Then x has
a right inverse means that xy = 1 for some y ∈ R. In particular, x 6= 0.

It is convenient to prove instead the equivalence of the negations of (a), (b) and (c). That is, we prove
the equivalence of, (A) x has exactly one right inverse, (B) x is a unit, (C) x is not a left zero divisor.

(A)⇒(B): Suppose that y is the only right inverse of x. Note that x(y + 1 − yx) = xy + x − xyx =
1 + x − x = 1 and so y + 1 − yx is also a right inverse of x. Since there is only one right inverse we
must have y = y + 1 − yx, which after cancellation implies that yx = 1. Since y is now a two sided
inverse of x, x is a unit.
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(B)⇒(C): Suppose that x is a unit with two sided inverse x−1 (In fact, given xy = 1, you can
show that x−1 = y.) We show that x is not a left zero divisor. If xr = 0 for some r ∈ R, then
r = 1r = x−1xr = x−10 = 0. So x is not a left zero divisor. (Similarly, x is not a right zero divisor
either.)

(C)⇒(A): Now suppose that x is not a left zero divisor. If z is a right inverse of x, then xz = xy = 1
and then x(z − y) = 0. Since x is not a left zero divisor, this implies that z = y, that is, y is the only
right inverse of x.

Remark: The argument in S10 Rings C shows that if x has a right inverse and is not a unit, then x
has infinitely many right inverses.

2. (Algebra Comp S01, F01, S02, S03 and F07) Let I be an ideal of a commutative ring R with 1 6= 0.
Define the radical of I by √

I = {r ∈ R | rn ∈ I for some n ∈ N}.

(a) Show that
√
I is an ideal of R.

(b) If I and J are ideals such that I ⊆ J , then
√
I ⊆
√
J .

(c)
√√

I =
√
I.

(d) If I and J are ideals, then
√
I ∩ J =

√
I ∩
√
J .

Answer:

(a) It suffices to show that
√
I is closed under addition and under multiplication by elements of R.

First we notice that, because RI ⊆ I, if an ∈ I, then all higher powers of a are in I. Now suppose
that a, b ∈

√
I. Then there is an integer n ∈ N such that am ∈ I and bm ∈ I for all m ≥ n. Then

each term of the binomial expansion of (a+ b)2n has a sufficiently high power of a or of b so that
the term is in I. (Here we used RI ⊆ I.) Since I is closed under addition, (a + b)2n ∈ I and so
a+ b ∈

√
I.

Suppose that a ∈
√
I and r ∈ R. Then an ∈ I for some n ∈ N and so (ra)n = anrn ∈ I. (Here we

used RI ⊆ I.) Hence ra ∈
√
I.

(b) Suppose that r ∈
√
I. Then rn ∈ I for some n ∈ N. Since I ⊆ J , we have rn ∈ J and hence

r ∈
√
J .

(c) Note that, if r ∈ I, then r1 ∈ I and so r ∈
√
I. Hence I ⊆

√
I and, by (b),

√
I ⊆

√√
I.

For the opposite inclusion, suppose that r ∈
√√

I. Then rn ∈
√
I for some n ∈ N, and then

(rn)m ∈ I for some m ∈ N. Since rmn ∈ I, we have r ∈
√
I. This shows that

√√
I ⊆
√
I.

(d) Since I ∩ J ⊆ I, from (b), we get
√
I ∩ J ⊆

√
I. Similarly,

√
I ∩ J ⊆

√
J . Combing these

containments we get
√
I ∩ J ⊆

√
I ∩
√
J .

For the opposite containment, suppose that r ∈
√
I ∩
√
J . Then there are m,n ∈ N such that

rm ∈ I and rn ∈ J . Since rmn is in both I and in J , we have rmn ∈ I ∩ J and so r ∈
√
I ∩ J .

3. (Algebra Comp S03) Let R be a commutative ring with identity 1 and let M be an ideal of R. Prove
that M is a maximal ideal ⇐⇒ ∀r ∈ R−M , ∃x ∈ R such that 1− rx ∈M .

Answer: See F08 and F12 solutions.

4. (Algebra Comp S03) Let D be an Euclidean domain. Let a, b nonzero elements of D and d their GCD.
Prove that d = ax+ by for some x, y ∈ D.

Answer: Dummit and Foote, Theorem 4, p. 275.
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5. (Algebra Comp F03) Let R be a ring with identity. Ideals I and J are called comaximal if I + J = R.
Let Ii, i = 1, . . . , n be a collection of ideals that are pairwise comaximal; i.e., for i 6= j, Ii and Ij are
comaximal. Prove that for any k, 1 ≤ k ≤ n, the ideals Ik and

⋂
i 6=k Ii are comaximal.

Answer: For notational convenience we prove the following (stronger) result: Suppose that J, I1, I2, . . . , In
are ideals such that J + Ik = R for all k. Then J + (

⋂
k Ik) = R.

For each k = 1, 2, . . . , n there are elements jk ∈ J and ik ∈ Ik such that jk + ik = 1. The product of
all these expressions gives 1 =

∏
k(jk + ik). Expanding this out, every term, except one, contains at

least one of the jk, and so such terms are in J . In addition, the sum of all these terms is also in J .
The only term that is potentially not in J is

∏
k ik. But this term is in

⋂
k Ik. Thus 1 can be written

as a sum of an element of J and an element of
⋂
k Ik. That is, 1 = j + i with j ∈ J and i ∈

⋂
k Ik.

Now, if r ∈ R we have r = r(j + i) = rj + ri ∈ J +
⋂
k Ik. This means that J + (

⋂
k Ik) = R.

6. (Algebra Comp F01 and F04) Let R be a commutative ring with identity. Assume 1 = e + f , and
ef = 0. Define Φ : R→ R by Φ(x) = ex. Prove:

(a) e is an idempotent (i.e. e2 = e).

(b) Φ is a ring homomorphism.

(c) e is the identity of Φ(R) (the image of Φ).

Answer:

(a) e = e1 = e(e+ f) = e2 + ef = e2.

(b) Suppose x, y ∈ R. Then Φ(x + y) = e(x + y) = ex + ey = Φ(x) + Φ(y), and Φ(xy) = e(xy) =
e2(xy) = (ex)(ey) = Φ(x)Φ(y). Hence Φ is a ring homomorphism.

(c) Let x ∈ Φ(R). Then x = Φ(y) = ey for some y ∈ R and so ex = e(ey) = (e2)y = ey = x. We
have shown that ex = x for all x ∈ Φ(R), that is, e is the identity of Φ(R).

7. (Algebra Comp F04) Let R be a nonzero ring such that x2 = x for all x ∈ R. Show that R is
commutative and has characteristic 2.

Answer: Let x, y ∈ R. Then x2 = x, y2 = y and (x + y)2 = x + y. Expanding this last equation out
and canceling gives xy + yx = 0. Setting y = x in this equation and using x2 = x we get x + x = 0
for all x ∈ R. Thus R has characteristic 2 and also x = −x for all x ∈ R. Going back to the equation
xy + yx = 0, we now see that xy − yx = 0, or xy = yx holds for all x, y ∈ R and R is commutative.

8. (Algebra Comp F04) Prove that if F is a field then every ideal of the ring F [x] is principal.

Answer: Fraleigh, Theorem 27.24

9. (Algebra Comp S04) Let R be the ring of functions from R to R, the real numbers. Reminder: For
f, g ∈ R, f + g and fg are defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all x ∈ R.

(a) Show that I = {f ∈ R | f(0) = 0} is an ideal of R which is maximal.

(b) If Z[x] is the ring of polynomials over the integers Z, show that J = {f ∈ Z[x] | f(0) = 0} is an
ideal of Z[x] that is not maximal.

Answer:

(a) Let φ : R → R be defined by φ(f) = f(0). Then it is easy to check that φ is a surjective ring
homomorphism with kernel I = {f ∈ R | f(0) = 0}. Thus I is an ideal and R/I ∼= R. Since R is
a field, I is maximal.

(b) Let φ : Z[x]→ Z be defined by φ(f) = f(0). Then it is easy to check that φ is a surjective ring ho-
momorphism with kernel J = {f ∈ Z[x] | f(0) = 0}. (In fact, φ is an evaluation homomorphism.)
Thus J is an ideal and Z[x]/J ∼= Z. Since Z is not a field, J is not maximal.
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10. (Algebra Comp S05) Let R be a subring of a field F such that, for every x ∈ F , either x ∈ R or
x−1 ∈ R. Prove that the ideals of R are linearly ordered; i.e., if I and J are ideals of R, then either
I ⊆ J or J ⊆ I.

Answer: If I ⊆ J we are done. Otherwise, I 6⊆ J and there exists some i ∈ I such that i 6∈ J . Note
that i 6∈ J implies i 6= 0. We show that J ⊆ I.

Suppose that 0 6= j ∈ J . Then x = j−1i is in F , so either x = j−1i ∈ R or x−1 = ji−1 ∈ R. In the first
case, j−1i = r for some r ∈ R. But then i = rj ∈ J , contradicting i 6∈ J . Thus we have ji−1 = r ∈ R
and j = ri ∈ I. We have now shown that all nonzero elements of J are in I. Since 0 ∈ I in any case,
we have J ⊆ I.

11. (Algebra Comp F06) Let Zn[x] denote the ring of polynomials in x with coefficients in the ring of
integers modulo n. Let R = Z6[x]. Let I = (4) ⊆ R. (In other words, I is the ideal in R generated by
the constant 4.) Prove that:

(a) The ring R/I is isomorphic to the ring Z2[x]

(b) I is a prime ideal

(c) I is not a maximal ideal.

Answer:

(a) There are reduction homomorphisms from Z[x] to Z6[x] and from Z[x] to Z2[x]. Since the kernel of
the first of these homomorphisms (6) is contained in the kernel of the second homomorphism (2),
there is an induced surjective homomorphism from Z6[x] to Z2[x]. This is essentially the Third
Isomorphism Theorem of Dummit and Foote, Theorem 8, p. 246. The kernel of the homomorphism
from Z6[x] to Z2[x] is I = (2) = (4) and so Z6[x]/I ∼= Z2[x].

(b) Since Z2 is a field and a domain, Z2[x] is a domain and I is a prime ideal. See Fraleigh, Theo-
rem 27.15.

(c) Since Z2[x] is not a field, I is not a maximal ideal. See Fraleigh, Theorem 27.9.

12. (Algebra Comp S07) Let R be a ring with indentity 1 and a, b ∈ R such that ab = 1. Let X = {x ∈
R | ax = 1}. Show the following:

(a) If x ∈ X, then b+ 1− xa ∈ X.

(b) If φ : X → X is defined by φ(x) = b+ 1− xa for x ∈ X, then φ is injective (one-to-one).

(c) X contains either exactly one element or infinitely many elements. Hint: Recall the Pigeonhole
Principle—an injective (one-to-one) function from a finite set to itself is surjective (onto).

Answer:

(a) If x ∈ X, then ax = 1. Hence a(b+1−xa) = ab+a+axa = 1−a+1a = 1, and so b+1−xa ∈ X.

(b) Suppose φ(x) = φ(y) for some x, y ∈ X. Then b+1−xa = b+1−ya and so xa = ya. Multiplying
this by b, we get xab = yab, and, since ab = 1, x = y.

(c) First we note that if a is invertible, then x ∈ X implies ax = 1 and hence x = a−1ax = a−1. So,
in this case, X = {a−1}.
Now suppose that a is not invertible. We show that there is no x ∈ X such that φ(x) = b. Solving
φ(x) = b, we get xa = 1. But since ax = 1 (because x ∈ X), this would imply that x is a−1,
contrary to our assumption that a is not invertible.

Since b ∈ X, this means that φ is not surjective (onto). Since φ is injective, this is only possible
if X is infinite.
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13. (Algebra Comp F07) Let R be a finite commutative ring with more that one element and with no zero
divisors. Prove that R is a field.

Answer: For each nonzero a ∈ R, define a function φa : R→ R by φa(x) = ax for all x ∈ R. We show
that φa is injective. Suppose that φa(x) = φa(y) for some x, y ∈ R. Then ax = ay and so a(x−y) = 0.
Since a 6= 0 and R has no zero divisors, this can only happen if x− y = 0, that is, x = y. Because R is
finite and φa is injective, φa is also surjective. In particular, there is some e ∈ R such that φa(e) = a
that is ae = a.

We show that e is the multiplicative identity element of R. Indeed, if x ∈ R, then a(x − ex) =
ax − aex = ax − ax = 0, and, once again since a is not a zero divisor, we get x = ex. This shows
that e is the multiplicative identity element of R, and so R is an integral domain. Finally, since φa is
surjective, there is some element b ∈ R such that ab = e, thus a has a multiplicative inverse. Since this
is true of any nonzero element of R, R is a field.

Fields

1. (Algebra Comp S00) (Corrected from original!) Let E be an algebraic extension of a field F . Let
α ∈ E and let p(x) be the minimal polynomial of α over F with deg p(x) = 5. Prove:

(a) F (α2) = F (α).

(b) If β ∈ E and [F (β) : F ] = 3, then p(x) is the minimal polynomial for α over F (β).

Answer:

(a) Since α2 ∈ F (α), we have F ⊆ F (α2) ⊆ F (α). Because [F (α) : F ] = degF α = 5, we have either
[F (α2) : F ] = 5 or [F (α2) : F ] = 1. But [F (α2) : F ] = 1 implies that α2 ∈ F , that is, α2 − r = 0
for some r ∈ F , and this means that degF α ≤ 2, a contradiction. Hence [F (α2) : F ] = 5,
[F (α) : F (α2)] = 1 and F (α2) = F (α).

(b) Since 3 = degF β and 5 = degF α are relatively prime, [F (α, β) : F ] = 3 · 5 (see Algebra Comp
S14), and we have

F ⊆ F (β) ⊆ F (α, β)

3 5

15

Because degF (β) α = [(F (β))(α) : F (β)] = [F (α, β) : F (β)] = 5, the minimal polynomial for α
over F (β) has degree 5. But p(x) has degree 5, has coefficients in F (β), is monic and has α as a
root, so p(x) must be the minimal polynomial for α over F (β).

2. (Algebra Comp S03) For some prime p, let f(x) be an irreducible polynomial in Zp[x], the ring of
polynomials with coefficients in Zp. Prove that f(x) divides xp

n − x for some n.

Answer: The splitting field F for f over Zp is a finite field with characteristic p so has pn elements for
some n ∈ N. (That is, F = Fpn .) The set of nonzero elements of F is a group (over multiplication) of
order pn − 1 and so ap

n−1 = 1 for all nonzero a ∈ F . Multiplying this by a gives ap
n

= a, an equation
that holds for all a ∈ F . Thus every element of F is a zero of xp

n − x. In particular, every zero of f is
a zero of xp

n − x and so f divides xp
n − x.

3. (Algebra Comp S04) Find a complex number α such that Q(α) = Q(
√

3, 3
√

2). Prove your claim.

Answer: Almost any number in Q(
√

3, 3
√

2) would do. But the claim is easiest to prove for α =
√

3 3
√

2.
Certainly α ∈ Q(

√
3, 3
√

2) and so Q(α) ⊆ Q(
√

3, 3
√

2). Also
√

3 = α3/6 ∈ Q(α) and 3
√

2 = α4/18 ∈ Q(α),
and so Q(

√
3, 3
√

2) ⊆ Q(α).

OR
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Let α =
√

3 + 3
√

2. Then, since α ∈ Q(
√

3, 3
√

2), we get Q(α) ⊆ Q(
√

3, 3
√

2). To prove the opposite
inclusion, we notice that (α−

√
3)3 = 2. That is, α3 − 3

√
3α2 + 9α− 2− 3

√
3 = 0. Because α ∈ R, we

have α2 + 1 > 0, and so the above equation can be solved for
√

3:

√
3 =

α3 + 9α− 2

3(α2 + 1)
∈ Q(α).

Then 3
√

2 = α−
√

3 is also in Q(α) and Q(
√

3, 3
√

2) ⊆ Q(α).

4. (Algebra Comp F04) Show that the group of automorphisms of the rational numbers Q is trivial.

Answer: Let φ : Q → Q be an automorphism. Let F be the fixed field of φ, that is, F = {q ∈ Q |
φ(q) = q}. Then 1 ∈ F since 1 is fixed by any automorphism. Then, since F is an additive subgroup of
Q, the group generated by 1 is contained in F , that is, Z ⊆ F . Further, since F is a field, F is closed
under multiplication and division of nonzero elements, and so Q ⊆ F . This means F = Q, φ(q) = q
for all q ∈ Q, and the only automorphism is the identity function.

5. (Algebra Comp S05) Let F be a finite field of n = pm elements. Find necessary and sufficient conditions
to insure that f(x) = x2 + 1 has a root in F ; i.e., f is not irreducible over F .

Answer: Suppose first that p is an odd prime. Let F ∗ be the group of nonzero elements of F under
multiplication. If α ∈ F is a root of f , then α 6= 1 (because p 6= 2), α2 = −1 6= 1 (because p 6= 2) and
α4 = 1. That means α has order 4 in the group F ∗. Conversely, if α ∈ F ∗ has order 4, then α 6= 1,
α2 6= 1 and and α4 = 1. Since 0 = α4 − 1 = (α2 − 1)(α2 + 1) and α2 − 1 6= 0, we have α2 + 1 = 0 and
α is a root of f .

Thus f has a root if and only if F ∗ has an element of order 4. (This is all a consequence of f being
the fourth cyclotomic polynomial.) Since F ∗ is a cyclic group (Fraleigh Corollary. 23.6), F ∗ has an
element of order 4 if and only if its order is a multiple of 4, if and only if 4 divides pm − 1, if and only
if pm ≡ 1 mod 4. Now suppose that p = 2. Then F has characteristic 2 and f(1) = 12 + 1 = 0. So 1
is a root of f (and f is reducible: f(x) = (x+ 1)2).

6. (Algebra Comp S05) Find the minimal polynomial for α =
√

5 +
√

2 over the field of rationals Q and
prove it is minimal.

Answer: Since α2 = 5+
√

2 and (α2−5)2 = 2, α is a root of f(x) = (x2−5)2−2 = x4−10x2+23 ∈ Q[x].
To show that f is irreducible over Q it suffices to notice that f(x− 1) = x4 − 4x3 − 4x2 + 16x+ 14 is
irreducible over Q by Eisenstein with p = 2. Hence f is the minimal polynomial for α over Q.

7. (Algebra Comp F05) Produce an explicit example of a field with 4 elements. Give its complete multi-
plication table. Hint: x2 + x+ 1 is irreducible over Z2.

Answer: Since x2 + x+ 1 is irreducible over Z2, F = Z2[x]/(x2 + x+ 1) is a field. The elements of this
field are 0̄ = 0 + (x2 +x+ 1), 1̄ = 1 + (x2 +x+ 1), x̄ = x+ (x2 +x+ 1) and 1̄ + x̄ = 1 +x+ (x2 +x+ 1).
The multiplication table is

· 0̄ 1̄ x̄ 1̄ + x̄

0̄ 0̄ 0̄ 0̄ 0̄

1̄ 0̄ 1̄ x̄ 1̄ + x̄

x̄ 0̄ x̄ 1̄ + x̄ 1̄

1̄ + x̄ 0̄ 1̄ + x̄ 1̄ x̄

8. (Algebra Comp F05) Let R be the ring of matrices of the form

[
a b
2b a

]
with a, b ∈ Q and usual matrix

operations. Prove that R is isomorphic to Q(
√

2).
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Answer: We know that every element of Q(
√

2) can be written uniquely in the form a + b
√

2 with
a, b ∈ Q. So the function φ : R→ Q(

√
2) defined by

φ

([
a b
2b a

])
= a+ b

√
2

for a, b ∈ Q is a bijection. It remains to show that φ is a homomorphism. The additive property is
easy, so we confirm just the multiplicative property:

φ

([
a1 b1
2b1 a1

] [
a2 b2
2b2 a2

])
= φ

([
a1a2 + 2b1b2 a1b2 + b1a2

2(a1b2 + b1a2) a1a2 + 2b1b2

])
= (a1a2 + 2b1b2) + (a1b2 + b1a2)

√
2

= (a1 + b1
√

2)(a2 + b2
√

2)

= φ

([
a1 b1
2b1 a1

])
φ

([
a2 b2
2b2 a2

])
for all a1, a2, b1, b2 ∈ Q.

9. (Algebra Comp S07) Let K be an extension field of F and α ∈ K. Show that, if F (α) = F (α2), then
α is algebraic over F .

Answer: If α ∈ F (α2), then α = g(α2)/h(α2) for some polynomials g, h ∈ F [x] (with h 6= 0). Clearing
denominators, we have αh(α2)−g(α2) = 0 and so α is a zero of the polynomial f(x) = xh(x2)−g(x2) ∈
F [x]. Since the degree of g(x2) is even and the degree of xh(x2) is odd, f cannot be zero. Hence α is
algebraic over F .

10. (Algebra Comp S07) Let σ = e2πi/7 ∈ C, and F = Q(σ). Describe the Galois group of F over Q.
Explain what theorems you are using. (Here C denotes the field of complex numbers, and Q denotes
the field of rational numbers.)

Answer: The minimum polynomial for σ over Q is the seventh cyclotomic polynomial Φ7(x) =
x6 + x5 + x4 + x3 + x2 + x + 1. The other zeros of this polynomial are σk with k = 2, 3, 4, 5, 6, and
these zeros are all in F . This means that F is the splitting field for Φ7, and that F is Galois over Q.
Since Φ7 is irreducible over Q (as are all cyclotomic polynomials), all these zeros are conjugates of each
other.

Each automorphism of F over Q sends σ to one of its conjugates and is uniquely determined by this
conjugate. Thus there six automorphisms. Let φ be the automorphism of F over Q that sends σ to
σ3. Then φ2(σ) = φ(σ3) = σ2, φ3(σ) = σ6, φ4(σ) = σ4, φ5(σ) = σ5 and φ6(σ) = σ. Thus each of
the six automorphisms is a power of φ. In other words, the Galois group is cyclic of order 6 with φ as
generator.

11. (Algebra Comp F07) Let E be an extension field of F with [E : F ] = 7.

(a) Show that F (α) = F (α3) for all α ∈ E.

(b) Show that F (α) = F (α9) for all α ∈ E.

Answer: Reminder: deg(α, F ) = [F (α) : F ] divides [E : F ] = 7. So either deg(α, F ) = [F (α) : F ] = 1
with F (α) = F and α ∈ F , or deg(α, F ) = [F (α) : F ] = 7 with F (α) = E and α 6∈ F .

(a) If α ∈ F , then α3 ∈ F and F (α) = F (α3) = F . Otherwise, α is not in F and so deg(α, F ) = 7.
Because of this, α3 cannot be in F either. (If α3 ∈ F then the degree of α would be three or less.)
Thus deg(α3, F ) = 7 and F (α) = F (α3) = E.

(b) By (a), F (α) = F (α3) = F ((α3)3) = F (α9).
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