Groups

1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with $A \subseteq B$. If $A \cap C = B \cap C$ and AC = BC then prove that A = B.

Answer: Let $b \in B$. Since $b = b1 \in BC = AC$, there are $a \in A$ and $c \in C$ such that b = ac. Since $a^{-1} \in A \subseteq B$, we have $c = a^{-1}b \in B$, and so $c \in B \cap C = A \cap C$. This implies that $c \in A$ and hence $b = ac \in A$. We have shown that all elements of B are in A and so A = B. Note that the claim is true even if the subgroups are not normal.

2. (Algebra Comp S03) Let G be a finite group with identity e, and such that for some fixed integer n > 1, $(xy)^n = x^n y^n$ for all $x, y \in G$. Let $G_n = \{z \in G : z^n = e\}$ and $G^n = \{x^n : x \in G\}$. Prove that both G_n , and G^n are normal subgroups of G and that $|G^n| = [G : G_n]$.

Answer: Define $\phi: G \to G$ by $\phi(x) = x^n$ for all $x \in G$. ϕ is a homomorphism because

$$\phi(xy) = (xy)^n = x^n y^n = \phi(x)\phi(y)$$

for all $x, y \in G$. The kernel of ϕ is G_n and the image is G^n . This makes G_n a normal subgroup of G, G^n a subgroup of G and $G/G_n \cong G^n$, in particular, $|G^n| = [G : G_n]$.

It remains only to check that the subgroup G^n is normal. This follows from the equation

$$\phi(yxy^{-1}) = (yxy^{-1})^n = \underbrace{(yxy^{-1})(yxy^{-1})(yxy^{-1})\cdots(yxy^{-1})}_{n \text{ times}} = yx^ny^{-1} = y\phi(x)y^{-1}.$$

So, if $a \in G^n$, then $a = \phi(x)$ for some $x \in G$ and, for all $y \in G$ we have $yay^{-1} = y\phi(x)y^{-1} = \phi(yxy^{-1}) \in G^n$.

- 3. (Algebra Comp S03) Prove:
 - (a) A group of order 45 is abelian.
 - (b) A group of order 275 is solvable.

Answer: See F13 and S09.

4. (Algebra Comp F03) Let G be an abelian group of order pq with p and q distinct primes. Show that G is cyclic. (Don't use the Classification Theorem of Finitely Generated Abelian Groups.)

Answer: By Sylow (or Cauchy), G contains a subgroup of order p and hence an element a of order p. Similarly G contains an element b of order q. We now solve the equation $(ab)^n = 1$ for n. Since a and b commute we have $1 = 1^p = ((ab)^n)^p = a^{np}b^{np} = b^{np}$. Since b has order q, this implies that q divides np, and since $p \neq q$, that q divides n. Similarly, p divides n and since $p \neq q$, pq divides n. Since the order of ab also divides |G| = pq, we have |ab| = pq and $G = \langle ab \rangle$.

5. (Algebra Comp F03) Show that all groups of order $3^2 \cdot 11^2$ are solvable.

Answer: Let G be a group of order $3^2 \cdot 11^2$. By Sylow, n_{11} divides $3^2 \cdot 11^2$ and n_{11} is congruent to 1 modulo 11. The only number satisfying these conditions is $n_{11} = 1$, and so G has a normal subgroup N of order 11^2 . Since N has prime square order, N is abelian, and G/N has order 3^2 so is also abelian for the same reason. This means that G is solvable.

6. (Algebra Comp F03) Let G be a p-group and $N \leq G$, a normal subgroup of order p. Prove that N is in the center of G.

Answer: Since N is normal, it is a union of conjugacy classes of G. Such a conjugacy class has either one element, in which case the element is in Z(G), or has a multiple of p elements. Since |N| = p, it must be a union of one-element conjugacy classes. Since an element is in Z(G) if and only if it forms a one-element conjugacy class, we have $N \leq Z(G)$. 7. (Algebra Comp F04) Let H and N be subgroups of a finite group G, N normal in G. Suppose that |G:N| is finite and |H| is finite, and gcd(|G:N|, |H|) = 1. Prove that $H \leq N$.

Answer: Let $\phi : H \to G/N$ be the restriction of the natural homomorphism $G \to G/N$. Since $H/\ker \phi \cong \phi(H) \leq G/N$, the order of $\phi(H)$ divides both |H| and |G/N| = |G : N|. But gcd(|G : N|, |H|) = 1, and so $|\phi(H)| = 1$, and $\phi(H)$ is the trivial subgroup of G/N. In other words H is contained in the kernel of ϕ , namely $H \cap N$. Hence $H \leq N$.

- 8. (Algebra Comp F04) Assume $|G| = p^3$ with p a prime.
 - (a) Show |Z(G)| > 1.
 - (b) Prove that if G is nonabelian, then |Z(G)| = p.

Answer:

- (a) Dummit and Foote, Theorem 8, page 125.
- (b) Since $|G| = p^3$, the order of Z(G) is 1, p, p^2 or p^3 . The case |Z(G)| = 1 is eliminated by (a). If $|Z(G)| = p^3$, then G is abelian, contrary to assumption. If $|Z(G)| = p^2$, then G/Z(G) is a cyclic group of order p. This would imply that G is abelian once again (see Algebra Comp F12), contrary to assumption. Thus we are left with |Z(G)| = p.
- 9. (Algebra Comp F04) Let P be a Sylow p-subgroup of G. Assume that $P \trianglelefteq N \trianglelefteq G$. Show that $P \trianglelefteq G$.

Answer: Suppose that $|G| = p^k m$ with $m, k \in \mathbb{N}$ and $p \nmid m$. Then any subgroup of order p^k is a Sylow p-subgroup of G. In particular, $|P| = p^k$. Since $P \leq N \leq G$, the order of N is a multiple of p^k and a divisor of $p^k m$. Thus $|N| = p^k l$ where l|m. This means that any subgroup of N of order p^k is a Sylow p-subgroup of N. In particular, P is a Sylow p-subgroup of N. In fact, since $P \leq N$, P is the only Sylow p-subgroup of N. (The set of Sylow p-subgroups forms a conjugacy class. Since $P \leq N$, P is conjugate only to itself (with respect to conjugation by elements of N).)

Now let $g \in G$. Then gPg^{-1} is a subgroup that is isomorphic to P, so has order p^k . Moreover, , because N is normal, $gPg^{-1} \subseteq gNg^{-1} = N$. So gPg^{-1} is a subgroup of N with order p^k , that is, a Sylow p-subgroup of N. But there is only one such subgroup, namely P. So $gPg^{-1} = P$ for all $g \in G$, which means $P \leq G$.

10. (Algebra Comp S05) Let G be an abelian group, $H = \{a^2 \mid a \in G\}$ and $K = \{a \in G \mid a^2 = 1\}$. Prove that $H \cong G/K$.

Answer: Let $\phi : G \to G$ be defined by $\phi(a) = a^2$ for all $a \in G$. Since G is abelian, ϕ is a homomorphism: $\phi(ab) = (ab)^2 = a^2b^2 = \phi(a)\phi(b)$ for all $a, b \in G$. Since ker $\phi = K$ and $\phi(G) = H$, we have $G/K \cong H$.

- 11. (Algebra Comp S05) Assume G = HZ(G), where H is a subgroup of G and Z(G) is the center of G. Show:
 - (a) $Z(H) = H \cap Z(G)$
 - (b) G' = H' (Where G' is the commutator group of G)
 - (c) $G/Z(G) \cong H/Z(H)$

Answer:

(a) Any element of H that is in Z(G) commutes with all elements of G, so commutes with all elements of H. In other words, $H \cap Z(G) \subseteq Z(H)$. On the other hand, if $h \in Z(H)$ then $h \in H$ and h commutes with all elements of H and Z(G). Thus h commutes with all elements of HZ(G) = G. Thus $Z(H) \subseteq H \cap Z(G)$.

(b) Since $H \leq G$, we have $H' \leq G'$. To show the opposite inclusion, it suffices to show that the generators of G' are in H'. Let $x, y \in G$. Then $x = h_1 z_1$ and $y = h_2 z_2$ for some $h_1, h_2 \in H$ and $z_1, z_2 \in Z(G)$. Then

$$xyx^{-1}y^{-1} = h_1z_1h_2z_2z_1^{-1}h_1^{-1}z_2^{-1}h_2^{-1} = h_1h_2h_1^{-1}h_2^{-1} \in H'.$$

(c) Define $\phi: H \to G/Z(G)$ by $\phi(h) = hZ(G)$ for all $h \in H$. Since ϕ is the restriction of the natural homomorphism $G \to G/Z(G)$, ϕ is a homomorphism. The image of ϕ is G/Z(G) and the kernel is

$$\ker \phi = \{h \in H \mid h \in Z(G)\} = H \cap Z(G) = Z(H).$$

Hence $H/Z(H) \cong H/\ker \phi \cong \phi(H) = G/Z(G)$.

12. (Algebra Comp S05) Prove:

- (a) A group of order 80 need not be abelian (twice) by exhibiting two non-isomorphic non-abelian groups of order 80 (with verification).
- (b) A group of order 80 must be solvable.

Answer:

- (a) It is easy to construct nonabelian groups of order 80. For example: D₈₀, D₄₀ × Z₂, D₈ × Z₁₀, D₈ × Z₅ × Z₂, etc. The first two are nonisomorphic, for example, because D₈₀ has elements of order 40 whereas all elements of D₄₀ × Z₂ have order 20 or less.
- (b) We need a few facts:
 - If $N \leq G$ with N and G/N solvable, then G is solvable.
 - All abelian groups are solvable.
 - All p-groups are solvable. Proof: Induction on $k \in \mathbb{N}$ where $|P| = p^k$. P has a nontrivial normal abelian subgroup, namely, Z(P). The quotient P/Z(P) has order p^{k-1} so is solvable by induction hypothesis. Hence P is solvable.

Now suppose |G| = 80. By the Sylow Theorems, $n_5 = 1, 16$. We consider two cases:

- Suppose that $n_5 = 1$. Then G has a normal subgroup N of order 5. N is abelian and G/N has order 16 so is solvable as above. This makes G solvable.
- Suppose that $n_5 = 16$ and $n_2 = 5$. Then, as usual, there are $16 \cdot 4 = 64$ elements of order 5. But this leaves only 16 elements of G for the Sylow 2-subgroups, each having order 16. Thus $n_2 = 1$ and G has a normal subgroup N of order $16 = 2^4$. This subgroup is solvable as above. The quotient G/N has order 5 so is abelian. This makes G solvable.
- 13. (Algebra Comp F05) Let G be a group of order 242. Prove that G contains a nontrivial normal abelian subgroup H.

Answer: $242 = 2 \cdot 11^2$. By Sylow, $n_{11} = 1$ so G contains a unique normal subgroup H of order 11^2 . Since H has prime squared order H is abelian.

- 14. (Algebra Comp S06) Let G be a group, and N a normal subgroup of G such that
 - (a) $N \neq G$

(b) If S is a subgroup of G and $N \subseteq S$, then S = N or S = G.

Show that G/N is cyclic of prime order.

Answer: Let $\pi : G \to G/N$ be the natural homomorphism with ker $\pi = N$. Suppose that $H \leq G/N$. Then $\pi^{-1}(H) = \{g \in G \mid \pi(g) \in H\}$ is a subgroup of G that contains N. By (b), $\pi^{-1}(H) = N$ or $\pi^{-1}(H) = G$. In the first case, H is the trivial subgroup of G/N; in the second case H = G/N. Thus the only subgroups of G/N are the trivial subgroup and G/N. To complete the proof we show that if K is a nontrivial group with the property that its only subgroups are {1} and K, then K is cyclic of prime order. Since K is nontrivial, there is some element $1 \neq a \in K$. By construction the subgroup $\langle a \rangle$ is nontrivial and so $\langle a \rangle = K$. Now K is a cyclic group and so $K \cong \mathbb{Z}$ or $K \cong \mathbb{Z}_n$ for some $n \in \mathbb{N}$. But \mathbb{Z} has infinitely many subgroups, and \mathbb{Z}_n has as many subgroups as n has positive divisors. So we must have $K \cong \mathbb{Z}_n$ with $n \in \mathbb{N}$ having exactly two positive divisors. Of course this means that n is prime.

- 15. (Algebra Comp S06)
 - (a) Identify a group of order 60 that is not solvable (You do not need to prove this).
 - (b) Identify two groups of order 60 that are nonisomorphic, nonabelian, and solvable and verify that they do meet this criteria.

Answer:

- (a) Of course, A_5 is the answer. A_5 is simple and not abelian, so can't be solvable.
- (b) Some groups of this type:

 $S_3 \times \mathbb{Z}_{10} \qquad D_{12} \times \mathbb{Z}_5 \qquad D_{10} \times S_3$ $D_{10} \times \mathbb{Z}_6 \qquad D_{30} \times \mathbb{Z}_2 \qquad D_{20} \times \mathbb{Z}_3$

To show that these are solvable groups you need to know that

$$\{(1,1)\} \trianglelefteq H \times \{1\} \trianglelefteq H \times K$$

for any groups H and K. To show that two of these groups are not isomorphic, you could calculate the numbers of elements of some particular order in each using $|(h,k)| = \operatorname{lcm}(|h|,|k|)$ for $(h,k) \in H \times K$. For example, $D_{12} \times \mathbb{Z}_5$ contains 8 elements of order 30, whereas $D_{10} \times S_3$ contains no elements of order 30.

16. (Algebra Comp F06) Let G be a group of order $175 = 5^2 \cdot 7$. Show that G is abelian.

Answer: By Sylow, n_5 divides 175 and n_5 is congruent to 1 modulo 5. The only number satisfying these conditions is $n_5 = 1$, and so G has a normal subgroup H of order 5^2 . Similarly, n_7 divides 175 and n_7 is congruent to 1 modulo 7. The only number satisfying these conditions is $n_7 = 1$, and so G has a normal subgroup K of order 7. By the usual argument, $H \cap K = \{1\}$, and $G = HK \cong H \times K$. But, H has prime square order so is abelian, and K has prime order so is cyclic and abelian, and so G is abelian. In fact, either $G \cong \mathbb{Z}_{25} \times \mathbb{Z}_7$ or $G \cong \mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_7$.

17. (Algebra Comp F06) Let G be a group and G' its commutator subgroup. Show that, if G = G', then any homomorphism from G to Z is trivial.

Answer: Let $\phi : G \to \mathbb{Z}$ be a homomorphism. Then $G/\ker \phi \cong \phi(G) \leq \mathbb{Z}$. Since any subgroup of an abelian group is abelian, $G/\ker \phi$ is abelian. By NEED REF, $G' \leq \ker \phi \leq G$. Since G' = G, this implies that $\ker \phi = G$, that is, $\phi(g) = 0$ for all $g \in G$ and ϕ is trivial.

18. (Algebra Comp S07) Show that any group of order 441 has a normal subgroup of order 49.

Answer: Let G be a group of order $441 = 3^2 \cdot 7^2$. By Sylow, n_7 divides 441 and n_7 is congruent to 1 modulo 7. The only number satisfying these conditions is $n_7 = 1$, and so G has a normal subgroup of order 7^2 .

19. (Algebra Comp S07) Let $\phi : G \to H$ be group homomorphism where G and H are finite groups such that the order of G and the order of H are relatively prime. Show that ϕ is trivial. (That is, show that $\phi(g) = e_H$ for all $g \in G$ where e_H is the identity element of H.)

Answer: Let n = |G| and m = |H|. Since gcd(m, n) = 1, there are integers x, y such that nx + my = 1. Let $g \in G$. Then, by a corollary to Lagrange's theorem, $g^n = e_G$ and $(\phi(g))^m = e_H$. Now, using the fact that ϕ is a homomorphism, we get

$$\phi(g) = \phi(g^1) = \phi(g^{nx+my}) = \phi(g^{nx}g^{my}) = \phi(g^{nx})\phi(g^{my}) = \phi(g^n)^x(\phi(g)^m)^y = \phi(e_G)e_H = e_H.$$

20. (Algebra Comp S07) Suppose that G is a group of order p^n where p is prime and $n \in \mathbb{N}$. Prove that, if the center of G has order p, then G contains no more than $p^{n-1} + p - 1$ conjugacy classes.

Answer: Since |Z(G)| = p, G has exactly p one-element conjugacy classes. All other conjugacy classes contain at least p elements. Since the union of these conjugacy classes contains $p^n - p$ elements, there can be at most $p^{n-1} - 1$ of these conjugacy classes. Thus G can have at most $p^{n-1} - 1 + p$ conjugacy classes in total.

21. (Algebra Comp F07) Let G be a group of order 147. Prove that G contains a nontrivial normal abelian subgroup.

Answer: Note that $147 = 3 \cdot 7^2$. The number of Sylow 7-subgroups, n_7 , satisfies $n_7|147$ and $n_7 \equiv 1 \mod 7$, and so $n_7 = 1$. Thus G has a unique normal Sylow 7-subgroup of order 7^2 . Any group of prime squared order is abelian, so we are done.

- 22. (Algebra Comp F07) Let p be a prime and assume G is a finite p-group.
 - (a) Show that the center of G is nontrivial (i.e. $Z(G) \neq \{e\}$).
 - (b) Let K be a normal subgroup of G of order p. Show that $K \subseteq Z(G)$.

Answer:

- (a) Dummit and Foote, Theorem 8, p. 125.
- (b) Since K is normal, K is a union of congruence classes. The size of any congruence class must divide the order of G so is 1, p, p^2 , etc. Because {1} is a congruence class in K, and K has only p elements, all congruence classes in K must have one element. Elements that form one element congruence classes are in the center of G. Thus $K \subseteq Z(G)$.

Rings

- 1. (Algebra Comp S01) Let R be a ring with identity and assume that $x \in R$ has a right inverse. Prove that the following are equivalent:
 - (a) x has more than one right inverse.
 - (b) x is not a unit.
 - (c) x is a left zero divisor.

Answer: If $R = \{0\}$ is the trivial ring with 1 = 0. Then (a), (b), and (c) are all false for x = 0 = 1, and the equivalence of these conditions is true. Otherwise, we have a ring in which $1 \neq 0$. Then x has a right inverse means that xy = 1 for some $y \in R$. In particular, $x \neq 0$.

It is convenient to prove instead the equivalence of the negations of (a), (b) and (c). That is, we prove the equivalence of, (A) x has exactly one right inverse, (B) x is a unit, (C) x is not a left zero divisor. $(A)\Rightarrow(B)$: Suppose that y is the only right inverse of x. Note that x(y+1-yx) = xy + x - xyx =1 + x - x = 1 and so y + 1 - yx is also a right inverse of x. Since there is only one right inverse we must have y = y + 1 - yx, which after cancellation implies that yx = 1. Since y is now a two sided inverse of x, x is a unit. $(B)\Rightarrow(C)$: Suppose that x is a unit with two sided inverse x^{-1} (In fact, given xy = 1, you can show that $x^{-1} = y$.) We show that x is not a left zero divisor. If xr = 0 for some $r \in R$, then $r = 1r = x^{-1}xr = x^{-1}0 = 0$. So x is not a left zero divisor. (Similarly, x is not a right zero divisor either.)

 $(C) \Rightarrow (A)$: Now suppose that x is not a left zero divisor. If z is a right inverse of x, then xz = xy = 1 and then x(z - y) = 0. Since x is not a left zero divisor, this implies that z = y, that is, y is the only right inverse of x.

Remark: The argument in S10 Rings C shows that if x has a right inverse and is not a unit, then x has infinitely many right inverses.

2. (Algebra Comp S01, F01, S02, S03 and F07) Let I be an ideal of a commutative ring R with $1 \neq 0$. Define the **radical** of I by

 $\sqrt{I} = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N} \}.$

- (a) Show that \sqrt{I} is an ideal of R.
- (b) If I and J are ideals such that $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
- (c) $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (d) If I and J are ideals, then $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.

Answer:

(a) It suffices to show that \sqrt{I} is closed under addition and under multiplication by elements of R. First we notice that, because $RI \subseteq I$, if $a^n \in I$, then all higher powers of a are in I. Now suppose that $a, b \in \sqrt{I}$. Then there is an integer $n \in \mathbb{N}$ such that $a^m \in I$ and $b^m \in I$ for all $m \ge n$. Then each term of the binomial expansion of $(a+b)^{2n}$ has a sufficiently high power of a or of b so that the term is in I. (Here we used $RI \subseteq I$.) Since I is closed under addition, $(a+b)^{2n} \in I$ and so $a+b \in \sqrt{I}$.

Suppose that $a \in \sqrt{I}$ and $r \in R$. Then $a^n \in I$ for some $n \in \mathbb{N}$ and so $(ra)^n = a^n r^n \in I$. (Here we used $RI \subseteq I$.) Hence $ra \in \sqrt{I}$.

- (b) Suppose that $r \in \sqrt{I}$. Then $r^n \in I$ for some $n \in \mathbb{N}$. Since $I \subseteq J$, we have $r^n \in J$ and hence $r \in \sqrt{J}$.
- (c) Note that, if $r \in I$, then $r^1 \in I$ and so $r \in \sqrt{I}$. Hence $I \subseteq \sqrt{I}$ and, by (b), $\sqrt{I} \subseteq \sqrt{\sqrt{I}}$. For the opposite inclusion, suppose that $r \in \sqrt{\sqrt{I}}$. Then $r^n \in \sqrt{I}$ for some $n \in \mathbb{N}$, and then $(r^n)^m \in I$ for some $m \in \mathbb{N}$. Since $r^{mn} \in I$, we have $r \in \sqrt{I}$. This shows that $\sqrt{\sqrt{I}} \subseteq \sqrt{I}$.
- (d) Since I ∩ J ⊆ I, from (b), we get √I∩J ⊆ √I. Similarly, √I∩J ⊆ √J. Combing these containments we get √I∩J ⊆ √I ∩ √J.
 For the opposite containment, suppose that r ∈ √I ∩ √J. Then there are m, n ∈ N such that r^m ∈ I and rⁿ ∈ J. Since r^{mn} is in both I and in J, we have r^{mn} ∈ I ∩ J and so r ∈ √I∩J.
- 3. (Algebra Comp S03) Let R be a commutative ring with identity 1 and let M be an ideal of R. Prove that M is a maximal ideal $\iff \forall r \in R M, \exists x \in R \text{ such that } 1 rx \in M$.

Answer: See F08 and F12 solutions.

4. (Algebra Comp S03) Let D be an Euclidean domain. Let a, b nonzero elements of D and d their GCD. Prove that d = ax + by for some $x, y \in D$.

Answer: Dummit and Foote, Theorem 4, p. 275.

5. (Algebra Comp F03) Let R be a ring with identity. Ideals I and J are called comaximal if I + J = R. Let $I_i, i = 1, ..., n$ be a collection of ideals that are pairwise comaximal; i.e., for $i \neq j$, I_i and I_j are comaximal. Prove that for any $k, 1 \leq k \leq n$, the ideals I_k and $\bigcap_{i \neq k} I_i$ are comaximal.

Answer: For notational convenience we prove the following (stronger) result: Suppose that J, I_1, I_2, \ldots, I_n are ideals such that $J + I_k = R$ for all k. Then $J + (\bigcap_k I_k) = R$.

For each k = 1, 2, ..., n there are elements $j_k \in J$ and $i_k \in I_k$ such that $j_k + i_k = 1$. The product of all these expressions gives $1 = \prod_k (j_k + i_k)$. Expanding this out, every term, except one, contains at least one of the j_k , and so such terms are in J. In addition, the sum of all these terms is also in J. The only term that is potentially not in J is $\prod_k i_k$. But this term is in $\bigcap_k I_k$. Thus 1 can be written as a sum of an element of J and an element of $\bigcap_k I_k$. That is, 1 = j + i with $j \in J$ and $i \in \bigcap_k I_k$.

Now, if $r \in R$ we have $r = r(j+i) = rj + ri \in J + \bigcap_k I_k$. This means that $J + (\bigcap_k I_k) = R$.

- 6. (Algebra Comp F01 and F04) Let R be a commutative ring with identity. Assume 1 = e + f, and ef = 0. Define $\Phi : R \to R$ by $\Phi(x) = ex$. Prove:
 - (a) e is an idempotent (i.e. $e^2 = e$).
 - (b) Φ is a ring homomorphism.
 - (c) e is the identity of $\Phi(R)$ (the image of Φ).

Answer:

- (a) $e = e1 = e(e+f) = e^2 + ef = e^2$.
- (b) Suppose $x, y \in R$. Then $\Phi(x + y) = e(x + y) = ex + ey = \Phi(x) + \Phi(y)$, and $\Phi(xy) = e(xy) = e^2(xy) = (ex)(ey) = \Phi(x)\Phi(y)$. Hence Φ is a ring homomorphism.
- (c) Let $x \in \Phi(R)$. Then $x = \Phi(y) = ey$ for some $y \in R$ and so $ex = e(ey) = (e^2)y = ey = x$. We have shown that ex = x for all $x \in \Phi(R)$, that is, e is the identity of $\Phi(R)$.
- 7. (Algebra Comp F04) Let R be a nonzero ring such that $x^2 = x$ for all $x \in R$. Show that R is commutative and has characteristic 2.

Answer: Let $x, y \in R$. Then $x^2 = x$, $y^2 = y$ and $(x + y)^2 = x + y$. Expanding this last equation out and canceling gives xy + yx = 0. Setting y = x in this equation and using $x^2 = x$ we get x + x = 0for all $x \in R$. Thus R has characteristic 2 and also x = -x for all $x \in R$. Going back to the equation xy + yx = 0, we now see that xy - yx = 0, or xy = yx holds for all $x, y \in R$ and R is commutative.

- 8. (Algebra Comp F04) Prove that if F is a field then every ideal of the ring F[x] is principal. Answer: Fraleigh, Theorem 27.24
- 9. (Algebra Comp S04) Let R be the ring of functions from \mathbb{R} to \mathbb{R} , the real numbers. Reminder: For $f, g \in \mathbb{R}, f + g$ and fg are defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all $x \in \mathbb{R}$.
 - (a) Show that $I = \{f \in R \mid f(0) = 0\}$ is an ideal of R which is maximal.
 - (b) If $\mathbb{Z}[x]$ is the ring of polynomials over the integers \mathbb{Z} , show that $J = \{f \in \mathbb{Z}[x] \mid f(0) = 0\}$ is an ideal of $\mathbb{Z}[x]$ that is not maximal.

Answer:

- (a) Let $\phi : R \to \mathbb{R}$ be defined by $\phi(f) = f(0)$. Then it is easy to check that ϕ is a surjective ring homomorphism with kernel $I = \{f \in R \mid f(0) = 0\}$. Thus I is an ideal and $R/I \cong \mathbb{R}$. Since \mathbb{R} is a field, I is maximal.
- (b) Let $\phi : \mathbb{Z}[x] \to \mathbb{Z}$ be defined by $\phi(f) = f(0)$. Then it is easy to check that ϕ is a surjective ring homomorphism with kernel $J = \{f \in \mathbb{Z}[x] \mid f(0) = 0\}$. (In fact, ϕ is an evaluation homomorphism.) Thus J is an ideal and $\mathbb{Z}[x]/J \cong \mathbb{Z}$. Since \mathbb{Z} is not a field, J is not maximal.

10. (Algebra Comp S05) Let R be a subring of a field F such that, for every $x \in F$, either $x \in R$ or $x^{-1} \in R$. Prove that the ideals of R are linearly ordered; i.e., if I and J are ideals of R, then either $I \subseteq J$ or $J \subseteq I$.

Answer: If $I \subseteq J$ we are done. Otherwise, $I \not\subseteq J$ and there exists some $i \in I$ such that $i \notin J$. Note that $i \notin J$ implies $i \neq 0$. We show that $J \subseteq I$.

Suppose that $0 \neq j \in J$. Then $x = j^{-1}i$ is in F, so either $x = j^{-1}i \in R$ or $x^{-1} = ji^{-1} \in R$. In the first case, $j^{-1}i = r$ for some $r \in R$. But then $i = rj \in J$, contradicting $i \notin J$. Thus we have $ji^{-1} = r \in R$ and $j = ri \in I$. We have now shown that all nonzero elements of J are in I. Since $0 \in I$ in any case, we have $J \subseteq I$.

- 11. (Algebra Comp F06) Let $\mathbb{Z}_n[x]$ denote the ring of polynomials in x with coefficients in the ring of integers modulo n. Let $R = \mathbb{Z}_6[x]$. Let $I = (4) \subseteq R$. (In other words, I is the ideal in R generated by the constant 4.) Prove that:
 - (a) The ring R/I is isomorphic to the ring $\mathbb{Z}_2[x]$
 - (b) I is a prime ideal
 - (c) I is not a maximal ideal.

Answer:

- (a) There are reduction homomorphisms from Z[x] to Z₆[x] and from Z[x] to Z₂[x]. Since the kernel of the first of these homomorphisms (6) is contained in the kernel of the second homomorphism (2), there is an induced surjective homomorphism from Z₆[x] to Z₂[x]. This is essentially the Third Isomorphism Theorem of Dummit and Foote, Theorem 8, p. 246. The kernel of the homomorphism from Z₆[x] to Z₂[x] is I = (2) = (4) and so Z₆[x]/I ≅ Z₂[x].
- (b) Since \mathbb{Z}_2 is a field and a domain, $\mathbb{Z}_2[x]$ is a domain and I is a prime ideal. See Fraleigh, Theorem 27.15.
- (c) Since $\mathbb{Z}_2[x]$ is not a field, I is not a maximal ideal. See Fraleigh, Theorem 27.9.
- 12. (Algebra Comp S07) Let R be a ring with indentity 1 and $a, b \in R$ such that ab = 1. Let $X = \{x \in R \mid ax = 1\}$. Show the following:
 - (a) If $x \in X$, then $b + 1 xa \in X$.
 - (b) If $\phi: X \to X$ is defined by $\phi(x) = b + 1 xa$ for $x \in X$, then ϕ is injective (one-to-one).
 - (c) X contains either exactly one element or infinitely many elements. Hint: Recall the Pigeonhole Principle—an injective (one-to-one) function from a finite set to itself is surjective (onto).

Answer:

- (a) If $x \in X$, then ax = 1. Hence a(b+1-xa) = ab+a+axa = 1-a+1a = 1, and so $b+1-xa \in X$.
- (b) Suppose $\phi(x) = \phi(y)$ for some $x, y \in X$. Then b+1-xa = b+1-ya and so xa = ya. Multiplying this by b, we get xab = yab, and, since ab = 1, x = y.
- (c) First we note that if a is invertible, then $x \in X$ implies ax = 1 and hence $x = a^{-1}ax = a^{-1}$. So, in this case, $X = \{a^{-1}\}$.

Now suppose that a is not invertible. We show that there is no $x \in X$ such that $\phi(x) = b$. Solving $\phi(x) = b$, we get xa = 1. But since ax = 1 (because $x \in X$), this would imply that x is a^{-1} , contrary to our assumption that a is not invertible.

Since $b \in X$, this means that ϕ is not surjective (onto). Since ϕ is injective, this is only possible if X is infinite.

13. (Algebra Comp F07) Let R be a finite commutative ring with more that one element and with no zero divisors. Prove that R is a field.

Answer: For each nonzero $a \in R$, define a function $\phi_a : R \to R$ by $\phi_a(x) = ax$ for all $x \in R$. We show that ϕ_a is injective. Suppose that $\phi_a(x) = \phi_a(y)$ for some $x, y \in R$. Then ax = ay and so a(x-y) = 0. Since $a \neq 0$ and R has no zero divisors, this can only happen if x - y = 0, that is, x = y. Because R is finite and ϕ_a is injective, ϕ_a is also surjective. In particular, there is some $e \in R$ such that $\phi_a(e) = a$ that is ae = a.

We show that e is the multiplicative identity element of R. Indeed, if $x \in R$, then a(x - ex) = ax - aex = ax - ax = 0, and, once again since a is not a zero divisor, we get x = ex. This shows that e is the multiplicative identity element of R, and so R is an integral domain. Finally, since ϕ_a is surjective, there is some element $b \in R$ such that ab = e, thus a has a multiplicative inverse. Since this is true of any nonzero element of R, R is a field.

Fields

- 1. (Algebra Comp S00) (Corrected from original!) Let E be an algebraic extension of a field F. Let $\alpha \in E$ and let p(x) be the minimal polynomial of α over F with deg p(x) = 5. Prove:
 - (a) $F(\alpha^2) = F(\alpha)$.
 - (b) If $\beta \in E$ and $[F(\beta) : F] = 3$, then p(x) is the minimal polynomial for α over $F(\beta)$.

Answer:

- (a) Since $\alpha^2 \in F(\alpha)$, we have $F \subseteq F(\alpha^2) \subseteq F(\alpha)$. Because $[F(\alpha) : F] = \deg_F \alpha = 5$, we have either $[F(\alpha^2) : F] = 5$ or $[F(\alpha^2) : F] = 1$. But $[F(\alpha^2) : F] = 1$ implies that $\alpha^2 \in F$, that is, $\alpha^2 r = 0$ for some $r \in F$, and this means that $\deg_F \alpha \leq 2$, a contradiction. Hence $[F(\alpha^2) : F] = 5$, $[F(\alpha) : F(\alpha^2)] = 1$ and $F(\alpha^2) = F(\alpha)$.
- (b) Since $3 = \deg_F \beta$ and $5 = \deg_F \alpha$ are relatively prime, $[F(\alpha, \beta) : F] = 3 \cdot 5$ (see Algebra Comp S14), and we have

Because $\deg_{F(\beta)} \alpha = [(F(\beta))(\alpha) : F(\beta)] = [F(\alpha, \beta) : F(\beta)] = 5$, the minimal polynomial for α over $F(\beta)$ has degree 5. But p(x) has degree 5, has coefficients in $F(\beta)$, is monic and has α as a root, so p(x) must be the minimal polynomial for α over $F(\beta)$.

2. (Algebra Comp S03) For some prime p, let f(x) be an irreducible polynomial in $\mathbb{Z}_p[x]$, the ring of polynomials with coefficients in \mathbb{Z}_p . Prove that f(x) divides $x^{p^n} - x$ for some n.

Answer: The splitting field F for f over \mathbb{Z}_p is a finite field with characteristic p so has p^n elements for some $n \in \mathbb{N}$. (That is, $F = \mathbb{F}_{p^n}$.) The set of nonzero elements of F is a group (over multiplication) of order $p^n - 1$ and so $a^{p^n - 1} = 1$ for all nonzero $a \in F$. Multiplying this by a gives $a^{p^n} = a$, an equation that holds for all $a \in F$. Thus every element of F is a zero of $x^{p^n} - x$. In particular, every zero of f is a zero of $x^{p^n} - x$ and so f divides $x^{p^n} - x$.

(Algebra Comp S04) Find a complex number α such that Q(α) = Q(√3, ³√2). Prove your claim.
 Answer: Almost any number in Q(√3, ³√2) would do. But the claim is easiest to prove for α = √3 ³√2. Certainly α ∈ Q(√3, ³√2) and so Q(α) ⊆ Q(√3, ³√2). Also √3 = α³/6 ∈ Q(α) and ³√2 = α⁴/18 ∈ Q(α), and so Q(√3, ³√2) ⊆ Q(α).

OR

Let $\alpha = \sqrt{3} + \sqrt[3]{2}$. Then, since $\alpha \in \mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$, we get $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{3}, \sqrt[3]{2})$. To prove the opposite inclusion, we notice that $(\alpha - \sqrt{3})^3 = 2$. That is, $\alpha^3 - 3\sqrt{3}\alpha^2 + 9\alpha - 2 - 3\sqrt{3} = 0$. Because $\alpha \in \mathbb{R}$, we have $\alpha^2 + 1 > 0$, and so the above equation can be solved for $\sqrt{3}$:

$$\sqrt{3} = \frac{\alpha^3 + 9\alpha - 2}{3(\alpha^2 + 1)} \in \mathbb{Q}(\alpha).$$

Then $\sqrt[3]{2} = \alpha - \sqrt{3}$ is also in $\mathbb{Q}(\alpha)$ and $\mathbb{Q}(\sqrt{3}, \sqrt[3]{2}) \subseteq \mathbb{Q}(\alpha)$.

- 4. (Algebra Comp F04) Show that the group of automorphisms of the rational numbers \mathbb{Q} is trivial. **Answer:** Let $\phi : \mathbb{Q} \to \mathbb{Q}$ be an automorphism. Let F be the fixed field of ϕ , that is, $F = \{q \in \mathbb{Q} \mid \phi(q) = q\}$. Then $1 \in F$ since 1 is fixed by any automorphism. Then, since F is an additive subgroup of \mathbb{Q} , the group generated by 1 is contained in F, that is, $\mathbb{Z} \subseteq F$. Further, since F is a field, F is closed under multiplication and division of nonzero elements, and so $\mathbb{Q} \subseteq F$. This means $F = \mathbb{Q}$, $\phi(q) = q$ for all $q \in \mathbb{Q}$, and the only automorphism is the identity function.
- 5. (Algebra Comp S05) Let F be a finite field of $n = p^m$ elements. Find necessary and sufficient conditions to insure that $f(x) = x^2 + 1$ has a root in F; i.e., f is not irreducible over F.

Answer: Suppose first that p is an odd prime. Let F^* be the group of nonzero elements of F under multiplication. If $\alpha \in F$ is a root of f, then $\alpha \neq 1$ (because $p \neq 2$), $\alpha^2 = -1 \neq 1$ (because $p \neq 2$) and $\alpha^4 = 1$. That means α has order 4 in the group F^* . Conversely, if $\alpha \in F^*$ has order 4, then $\alpha \neq 1$, $\alpha^2 \neq 1$ and and $\alpha^4 = 1$. Since $0 = \alpha^4 - 1 = (\alpha^2 - 1)(\alpha^2 + 1)$ and $\alpha^2 - 1 \neq 0$, we have $\alpha^2 + 1 = 0$ and α is a root of f.

Thus f has a root if and only if F^* has an element of order 4. (This is all a consequence of f being the fourth cyclotomic polynomial.) Since F^* is a cyclic group (Fraleigh Corollary. 23.6), F^* has an element of order 4 if and only if its order is a multiple of 4, if and only if 4 divides $p^m - 1$, if and only if $p^m \equiv 1 \mod 4$. Now suppose that p = 2. Then F has characteristic 2 and $f(1) = 1^2 + 1 = 0$. So 1 is a root of f (and f is reducible: $f(x) = (x + 1)^2$).

6. (Algebra Comp S05) Find the minimal polynomial for $\alpha = \sqrt{5 + \sqrt{2}}$ over the field of rationals \mathbb{Q} and prove it is minimal.

Answer: Since $\alpha^2 = 5 + \sqrt{2}$ and $(\alpha^2 - 5)^2 = 2$, α is a root of $f(x) = (x^2 - 5)^2 - 2 = x^4 - 10x^2 + 23 \in \mathbb{Q}[x]$. To show that f is irreducible over \mathbb{Q} it suffices to notice that $f(x - 1) = x^4 - 4x^3 - 4x^2 + 16x + 14$ is irreducible over \mathbb{Q} by Eisenstein with p = 2. Hence f is the minimal polynomial for α over \mathbb{Q} .

7. (Algebra Comp F05) Produce an explicit example of a field with 4 elements. Give its complete multiplication table. Hint: $x^2 + x + 1$ is irreducible over \mathbb{Z}_2 .

Answer: Since $x^2 + x + 1$ is irreducible over \mathbb{Z}_2 , $F = \mathbb{Z}_2[x]/(x^2 + x + 1)$ is a field. The elements of this field are $\overline{0} = 0 + (x^2 + x + 1)$, $\overline{1} = 1 + (x^2 + x + 1)$, $\overline{x} = x + (x^2 + x + 1)$ and $\overline{1} + \overline{x} = 1 + x + (x^2 + x + 1)$. The multiplication table is

•	$\bar{0}$	ī	\bar{x}	$\bar{1} + \bar{x}$
$\bar{0}$	ō	$\bar{0}$	$\bar{0}$	$\bar{0}$
ī	ō	Ī	\bar{x}	$\bar{1} + \bar{x}$
\bar{x}	ō	\bar{x}	$\bar{1} + \bar{x}$	Ī
$\bar{1} + \bar{x}$	ō	$\bar{1} + \bar{x}$	ī	\bar{x}

8. (Algebra Comp F05) Let R be the ring of matrices of the form $\begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$ with $a, b \in \mathbb{Q}$ and usual matrix operations. Prove that R is isomorphic to $\mathbb{Q}(\sqrt{2})$.

Answer: We know that every element of $\mathbb{Q}(\sqrt{2})$ can be written uniquely in the form $a + b\sqrt{2}$ with $a, b \in \mathbb{Q}$. So the function $\phi : R \to \mathbb{Q}(\sqrt{2})$ defined by

$$\phi\left(\begin{bmatrix}a&b\\2b&a\end{bmatrix}\right) = a + b\sqrt{2}$$

for $a, b \in \mathbb{Q}$ is a bijection. It remains to show that ϕ is a homomorphism. The additive property is easy, so we confirm just the multiplicative property:

$$\begin{split} \phi \left(\begin{bmatrix} a_1 & b_1 \\ 2b_1 & a_1 \end{bmatrix} \begin{bmatrix} a_2 & b_2 \\ 2b_2 & a_2 \end{bmatrix} \right) &= \phi \left(\begin{bmatrix} a_1a_2 + 2b_1b_2 & a_1b_2 + b_1a_2 \\ 2(a_1b_2 + b_1a_2) & a_1a_2 + 2b_1b_2 \end{bmatrix} \right) \\ &= (a_1a_2 + 2b_1b_2) + (a_1b_2 + b_1a_2)\sqrt{2} \\ &= (a_1 + b_1\sqrt{2})(a_2 + b_2\sqrt{2}) \\ &= \phi \left(\begin{bmatrix} a_1 & b_1 \\ 2b_1 & a_1 \end{bmatrix} \right) \phi \left(\begin{bmatrix} a_2 & b_2 \\ 2b_2 & a_2 \end{bmatrix} \right) \end{split}$$

for all $a_1, a_2, b_1, b_2 \in \mathbb{Q}$.

9. (Algebra Comp S07) Let K be an extension field of F and $\alpha \in K$. Show that, if $F(\alpha) = F(\alpha^2)$, then α is algebraic over F.

Answer: If $\alpha \in F(\alpha^2)$, then $\alpha = g(\alpha^2)/h(\alpha^2)$ for some polynomials $g, h \in F[x]$ (with $h \neq 0$). Clearing denominators, we have $\alpha h(\alpha^2) - g(\alpha^2) = 0$ and so α is a zero of the polynomial $f(x) = xh(x^2) - g(x^2) \in F[x]$. Since the degree of $g(x^2)$ is even and the degree of $xh(x^2)$ is odd, f cannot be zero. Hence α is algebraic over F.

10. (Algebra Comp S07) Let $\sigma = e^{2\pi i/7} \in \mathbb{C}$, and $F = \mathbb{Q}(\sigma)$. Describe the Galois group of F over \mathbb{Q} . Explain what theorems you are using. (Here \mathbb{C} denotes the field of complex numbers, and \mathbb{Q} denotes the field of rational numbers.)

Answer: The minimum polynomial for σ over \mathbb{Q} is the seventh cyclotomic polynomial $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. The other zeros of this polynomial are σ^k with k = 2, 3, 4, 5, 6, and these zeros are all in F. This means that F is the splitting field for Φ_7 , and that F is Galois over \mathbb{Q} . Since Φ_7 is irreducible over \mathbb{Q} (as are all cyclotomic polynomials), all these zeros are conjugates of each other.

Each automorphism of F over \mathbb{Q} sends σ to one of its conjugates and is uniquely determined by this conjugate. Thus there six automorphisms. Let ϕ be the automorphism of F over \mathbb{Q} that sends σ to σ^3 . Then $\phi^2(\sigma) = \phi(\sigma^3) = \sigma^2$, $\phi^3(\sigma) = \sigma^6$, $\phi^4(\sigma) = \sigma^4$, $\phi^5(\sigma) = \sigma^5$ and $\phi^6(\sigma) = \sigma$. Thus each of the six automorphisms is a power of ϕ . In other words, the Galois group is cyclic of order 6 with ϕ as generator.

- 11. (Algebra Comp F07) Let E be an extension field of F with [E:F] = 7.
 - (a) Show that $F(\alpha) = F(\alpha^3)$ for all $\alpha \in E$.
 - (b) Show that $F(\alpha) = F(\alpha^9)$ for all $\alpha \in E$.

Answer: Reminder: deg $(\alpha, F) = [F(\alpha) : F]$ divides [E : F] = 7. So either deg $(\alpha, F) = [F(\alpha) : F] = 1$ with $F(\alpha) = F$ and $\alpha \in F$, or deg $(\alpha, F) = [F(\alpha) : F] = 7$ with $F(\alpha) = E$ and $\alpha \notin F$.

- (a) If α ∈ F, then α³ ∈ F and F(α) = F(α³) = F. Otherwise, α is not in F and so deg(α, F) = 7. Because of this, α³ cannot be in F either. (If α³ ∈ F then the degree of α would be three or less.) Thus deg(α³, F) = 7 and F(α) = F(α³) = E.
- (b) By (a), $F(\alpha) = F(\alpha^3) = F((\alpha^3)^3) = F(\alpha^9)$.