Advice on balancing chemical reactions

Takes practice.

The quickest approach can vary.

General guidelines:

- 1. Leave the more complicated formulas "as is", and use the less complicated formulas to try to "fill in."
- 2. Keep polyatomic ions as intact units.

Practice:

$$C_{12}H_{22}O_{11} + O_2 \rightarrow CO_2 + H_2O$$

Review of Chapters 1-3: Ratios within a compound

The compound CO_2 has these ratios ...

- 1. 1 atom of C for every 2 atoms of O.
- 2. 6.022×10^{23} atoms of C for every 12.044 x 10^{23} atoms of O.
- 3. 1 mole of C atoms for every 2 moles of O atoms.
- 4. 12.0107 grams of C for every 32.9988 grams of O.

The chemical formula CO₂ tells us all this information.

Saying it another way,
$$1 \text{ CO}_2 : 1 \text{ C} : 2 \text{ O}$$
, or

$$\begin{array}{c|c}
\underline{1 C} & \underline{2 O} & \underline{1 C} \\
1 CO_2 & \underline{1 CO_2} & \underline{2 O}
\end{array}$$

 $*N_A$ and Molar Mass (MM) allow us to convert between atoms <--> moles <--> grams.

Chapter 4: Ratios within a reaction

Combustion (metabolism) of sucrose ($C_{12}H_{22}O_{11}$) to produce CO_2 and H_2O .

$$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O$$

1 mole of C₁₂H₂₂O₁₁ molecules produces 12 moles of CO₂ molecules and 11 moles of H₂O molecules.

1 mole of $C_{12}H_{22}O_{11}$ molecules combines with 12 moles of O_2 molecules.

Saying it another way,

Also means,

$$\begin{array}{ccc} \underline{12 \text{ CO}_2} & \underline{12 \text{ O}_2} & \underline{12 \text{ O}_2} \\ 11 \text{ H}_2\text{O} & \underline{12 \text{ CO}_2} & \underline{11 \text{ H}_2\text{O}} \end{array}$$

Must have a balanced chemical reaction! Or else ratios will be incorrect!

$$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O$$

If you metabolize 2.5 moles of $C_{12}H_{22}O_{11}$, how many moles of oxygen gas are needed?

" " " CO_2 are produced? " H_2O are produced?

We have covered the term **stoichiometry** (stoy-key-ahm-uh-tree, sto-key-ahm-uh-tree) **Ratios within a compound.** Ratios within a reaction.

grams <--> moles <--> grams

$$C_{12}H_{22}O_{11} + 12 O_2 \rightarrow 12 CO_2 + 11 H_2O$$

If you have 10.0 grams of $C_{12}H_{22}O_{11}$, how many

Moles O_2 ? Grams O_2 ?

Moles CO₂? Grams CO₂?

Moles H₂O? Grams H₂O?

Empirical formula from combustion analysis (instead of directly from mass % data)

Chemists use combustion reactions and other reactions to obtain the mass % of the elements in a compound.

Combustion reactions yield data to find carbon and hydrogen only.

The combustion reaction is carried out in an apparatus that ... collects carbon (C) as carbon dioxide (CO₂) and collects hydrogen (H) as water (H₂O).

- 1. We convert the data from CO₂ into data that will give us C.
- 2. We convert the data from H₂O into data that will give us H.

Example:

A 0.438 gram sample of styrene is burned (combusted) in excess oxygen, and the combustion reaction yields 1.481 g of CO₂ and 0.303 g H₂O. What is the empirical formula of styrene?

Practice:

A 6.22 gram sample of an unknown compound with the formula Si_xH_y is burned in excess oxygen. The Si is converted to 11.64 g SiO_2 , and the H is converted to 6.980 g H_2O . What is the empirical formula of the compound?