Concentration Units

Molarity: defined as moles of solute per liter of solution

\[M = \frac{\text{moles solute}}{\text{liters of solution}} = \frac{\text{mol}}{\text{L}} \]

The volume used is the total volume of the solution, not just the volume of the solvent.

Usually the volume of the solute is negligible compared to the solvent volume.

Concentration Units

Molality: defined as moles of solute per mass of solvent

\[m = \frac{\text{moles solute}}{\text{kilograms of solvent}} = \frac{\text{mol}}{\text{kg}} \]

In this case, the mass is only the mass of the solvent, not the total mass of the solution.
Concentration Units

Mole fraction: mole fraction is defined as the number of moles solute divided by the total number of moles of all species in the solution

\[X_A = \frac{\text{moles solute}}{\text{total moles in solution}} = \frac{n_A}{n_{\text{tot}}} \]

Mole fraction is a unitless number

Concentration Units

Parts-per-million (ppm) and parts-per billion (ppb)

For dilute aqueous solutions, we can make the assumption that the density of the solution is 1.00 g/mL

ppm and ppb express the mass of a specific solute relative to the mass of the solvent
Concentration Units

Parts-per-million (ppm) and parts-per billion (ppb)

$\text{ppm} = \mu g \text{ solute/mL soln}$

$= mg \text{ solute/L soln}$

$\text{ppb} = ng \text{ solute/mL soln}$

$= \mu g \text{ solute/L soln}$

When referring to gaseous mixtures, we usually compare the number of solute particles in a specific volume (not the mass of solute particles)

$\text{ppmv} = \mu mol \text{ solute/total mol in volume}$

$\text{ppbv} = nmol \text{ solute/total mol in volume}$
Aqueous Solutions

- A solution is composed of two parts: the solute and the solvent.
 - The solute is the minor component of the solution.
 - The solvent is the major component of the solution and is the liquid into which the solute is added.
 - Aqueous solutions are those in which water acts as the solvent.

Molarity

Determine concentration of a solution in which 6.081 g NaNO₃ is dissolved to a total volume of 843 mL.

1. Calculate moles of solute

 moles of NaNO₃
 6.081 g / 84.994 g mol⁻¹ = 7.155 x 10⁻² mol
Molarity

2. Calculate molarity of solution
 a. convert volume to L
 \[843 \text{ mL} = 0.843 \text{ L} \]
 b. calc M
 \[7.155 \times 10^{-2} \text{ mol} / 0.843 \text{ L} = 8.49 \times 10^{-2} \text{ M} \]

Dilutions

- When diluting a solution by adding more solvent, the amount of solute does not change (you do not add or take away the solute), only the concentration changes.

\[C_1 V_1 = C_2 V_2 \]
(C = concentration
V = volume)
50.0 mL of .650 M NaCl solution is diluted with 1000.0 mL of water. Determine concentration of final solution.

1. \(C_1V_1 = (0.650 \text{ M})(0.0500 \text{ L}) = 0.0325 \text{ mol NaCl} \)
2. final volume = \(V_2 = 50.0 \text{ mL} + 1000.0 \text{ mL} \)
 = 1050.0 mL
3. \(C_2V_2 = C_1V_1 = 0.0325 \text{ mol NaCl} \)
 \[C_2 = \frac{C_1V_1}{V_2} = \frac{0.0325 \text{ mol}}{1.0500 \text{ L}} = 3.10 \times 10^{-2} \text{ M} \]

You prepare a Cu stock solution with a concentration of 209.5 ppm. You need to now prepare a standard solution with a concentration of 7.5 ppm in a 25 mL volumetric flask. How do you prepare the standard?

\[C_1 = 209.5 \text{ ppm} \quad \text{V}_1 = ? \]
\[C_2 = 7.5 \text{ ppm} \quad \text{V}_2 = 25 \text{ mL} \]

\[\text{V}_1 = \frac{C_2V_2}{C_1} = \frac{(7.5 \text{ ppm})(25 \text{ mL})}{(209.5 \text{ ppm})} = 0.895 \text{ mL} \]