Ch. 23 Fundamentals of Analytical Separations

Separation
- Samples are usually complex mixtures. In order to identify and quantify the components of a mixture, we have to separate the components in the mixture.
- Separation methods
 - Extraction
 - Chromatography
 - Electrophoresis

Solvent Extraction
- The transfer of an analyte from one phase to a second based on the relative solubility of the analyte in two immiscible liquids.

\[K = \frac{[S]_2}{[S]_1} = \frac{(1-q)m}{V_1} \]

\[q = \left(\frac{V_2}{V_1 + KV_2} \right)^n \]

At equilibrium:
- \(K \): the partition coefficient for distribution of \(S \) between the two phases;
- \(q \): the fraction of \(S \) remaining in phase 1;
- \(n \): the \# of extractions.

If \(q = 1/4 \), then \(1/4 \) remains in phase 1 after one extraction.

Extraction Efficiency
- A solute \(S \) has a partition coefficient of 3 between toluene and water. If you have 100 mL of a 0.010 M solution of \(S \) in water:
 1. What fraction of the solute remains in H\(_2\)O after a 500 mL extraction with toluene?
 2. What fraction of the solute remains in H\(_2\)O after a 5-100 mL extractions with toluene?

\[q = \frac{100}{100 + (3)(500)} \approx 0.062 \approx 6\% \]

\[q = \left(\frac{100}{100 + (3)(100)} \right)^5 \approx 0.00098 \approx 0.1\% \]

It is more efficient to do several small extractions than one big extraction.

pH Effects
- The charge changes of an acid or base is dependent on pH.
- Distribute coefficient (D): an alternate form of the partition coefficient.

\[D = \frac{\text{Total conc. in phase 2}}{\text{Total conc. in phase 1}} = \frac{C_2}{C_1} \]

\[D = \frac{[B]}{[B] + [BH^+]} = \frac{K_a}{K_a + [H^+]} = K_a \]

\[K_a = \frac{[H^+][A^-]}{[HA]} \]

\[D = \frac{[HA]}{[HA] + [A^-]} = \frac{K_a}{K_a + [H^+]_1} = K_a \]

\[K_a = \frac{[H^+][A^-]}{[HA]} \]

α: fraction of the species (P.191)

pH Effects
- K for an amine B is 3.0 and the Ka for BH\(^+\) is 1.08×10\(^{-9}\). If 50.00 mL of 0.010 M aqueous amine is extracted with 100 mL of solvent, calculate the % remaining in the aqueous phase in M at (1) pH 10.00; (2) pH 8.00.

\[pH = 10.00: D = \frac{K_a}{K_a + [H^+]_2} = \frac{3.0 \times 1.0 \times 10^{-9}}{1.0 \times 10^{-9} + 1.0 \times 10^{-10}} \approx 2.73 \]

\[q = \frac{V_2}{V_1 + KV_2} = \frac{50}{50 + 2.73 \times 100} \approx 0.15 \approx 15\% \]

\[pH = 8.00: D = \frac{K_a}{K_a + [H^+]_2} = \frac{3.0 \times 1.0 \times 10^{-9}}{1.0 \times 10^{-9} + 1.0 \times 10^{-8}} = 0.273 \]

\[q = \frac{V_2}{V_1 + KV_2} = \frac{50}{50 + 0.273 \times 100} \approx 0.65 \approx 65\% \]
Extraction with a Metal Chelator

- Usually neutral complexes can be extracted into organic solvents. Charged complexes (e.g. MEDTA\(^2-\)) are not very soluble in organic solvents.
- Commonly used: dithizone, 8-hydroquinoline, and cupferron.

Extraction with a Metal Chelator

- Crown ethers can extract alkali metal ions and can bring them into non-polar solvents.

Extraction with a Metal Chelator

- Each ligand can be presented as a weak acid, HL.
- \(M^{n+}\) is in the aqueous phase and \(ML_n\) is in the organic phase.
- The distribution coefficient (D) for metal ion extraction depends on pH and [ligand].
- By select a pH, you can bring the metal into either phase.

Chromatography

- A separation process based on the various partitioning coefficients of different solutes between the two phases.
- Involving the interaction of solute(s) and two phases.
- Mobile phase: A gas or liquid that moves through the column.
- Stationary phase: A solid or liquid that remains in place.

Type of Chromatography

- Based on the mechanism of interaction of the solute with the stationary phase

 (1) Adsorption chromatography
 - Solute is adsorbed on the surface of the stationary phase (solid).
 - The stronger a solute adsorbs, the longer it takes to travel through the chromatography column.

Type of Chromatography

- Based on the mechanism of interaction of the solute with the stationary phase

 (2) Partition chromatography
 - GC
 - the partitioning of solutes between a mobile phase (gas) and bonded liquid stationary phase.
Type of Chromatography
- Based on the mechanism of interaction of the solute with the stationary phase

(3) Ion-exchange chromatography
- Ionic interactions to separate ions
- A stationary phase of anions will separate cations and vice versa.

(4) Molecular Size exclusion chromatography
- Size exclusion, gel filtration, or gel permeation chromatography
- Separate molecules by size
- Large molecules pass through faster (they do not get caught up in pores).

(5) Affinity chromatography
- Specific interactions of one kind of solute molecule to a second molecular that is covalently attached to the stationary phase
- Most selective (e.g., use antibodies to select out one protein from a mixture of hundreds)

The Chromatogram
- A plot of detector response with time.
- Volume flow rate (flow rate): vol. of solvent pass through the column
- Linear flow rate: the length of the column passed through by the solvent
- \(t_m \): Unretained mobile phase travels through the column in the minimum possible time
- \(t_r \): retention time, the time for each component needed after injection of the mixture onto the column until that component reaches the detector
- \(t_r' \): adjusted retention time, \(t_r' = t_r - t_m \)
- \(V_r \): retention volume, volume of mobile phase required to elute a solute to a maximum from a column. \(V_r = t_r' \times \text{flow rate} \)

Retention Parameters
- **Adjusted retention time**
 - Time spent in the stationary phase (or \(t_r' \))
 - \(t_r' = t_r - t_m \)
- **Relative retention**
 - Ratio of adjusted retention times for any two components
 - The greater the relative retention, the greater the separation
 - \(\alpha = \frac{t_{r2}}{t_{r1}} \)
- **Capacity factor** (or retention factor):
 - The longer a component is retained by the column, the greater is the capacity factor.
 - \(k' = \frac{t_r - t_m}{t_m} \)
• Example: Calculate the adjusted retention time and capacity factor for benzene and toluene in the GC experiment? Methane (as a solvent) peak is at 42 s, benzene at 251 s and toluene at 333 s.

For Benzene
\[t' = t_r - t_m = 251 - 42 = 209 \text{ s} \]
\[k' = \frac{t' - t_m}{t_m} = \frac{209}{42} = 5.0 \]

For Toluene
\[t' = t_r - t_m = 333 - 42 = 291 \text{ s} \]
\[k' = \frac{t' - t_m}{t_m} = \frac{291}{42} = 6.9 \]

• Example: If use the open tubular chromatography column, where methane (as a solvent) peak is at 42 s and benzene peak at 251 s. Calculate the partition coefficient \((K)\) for benzene between stationary and mobile phases and the fraction of the time benzene spends in the mobile phase.

Cross-sectional area of column
\[V_c = \pi r^2 \pi = 4.83 \times 10^{12} \mu m^3 \]

Cross-sectional area of coating
\[V_s = 2\pi r \times \text{thickness} = 2\pi (124.5) \times 1.78 \times 10^6 \mu m^3 \]
\[k = \frac{t_r - t_m}{t_m} = \frac{251 - 42}{42} = 5.0 = K V_s \propto V_c \Rightarrow K = 310 \]
\[k = \frac{t_r - t_m}{t_m} = \frac{251 - 42}{42} = 5.0 \]

Fraction of time in mobile phase:
\[t_m = \frac{1}{k+1} = \frac{1}{5.1} = 0.17 \]

Retention Time and Partition Coefficient
• The capacity factor is equivalent to the time the solute spends in the stationary phase over the mobile phase and can be related to the partition coefficient:
\[k' = \frac{C V_s}{C V_c} = K \frac{V_s}{V_c} \Rightarrow k' = \frac{t_r - t_m}{t_m} = \frac{t_r}{t_m} - 1 = \frac{V_s}{V_c} \]

• Relative retention can be related to retention time, capacity factor, and/or partition coefficient
\[\alpha = \frac{t_{R2}}{t_{R1}} = \frac{K_2}{K_1} \]

• Physical basis of chromatography: the greater the ratio of partition coefficients between mobile and stationary phases, the greater the separation between two components of a mixture.

Scaling Up
• Analytical and preparative
• Keep column length constant

• Cross-sectional area of column – mass of analyte – volume flow rate (if maintain constant linear flow rate) – sample volume applied to column

• If change the column length, then the mass of sample can be increased in proportion to the increase in length

Scaling equation:
\[\frac{\text{Mass 2}}{\text{Mass 1}} = \left(\frac{\text{Radius 2}}{\text{Radius 1}}\right)^2 \]

Diffusion
• One main cause of band broadening is diffusion.

• Diffusion coefficient \((D)\): measures the rate at which a substance moves randomly from a region of high concentration to a region of lower concentration.

• Std deviation of diffusive band spreading:
\[\sigma = \sqrt{2Dt} \]
Solute moving through a column can spread into a Gaussian distribution with a standard deviation, σ (K is a constant). Resolution of two peaks:

$$\text{Resolution} = \frac{\Delta t}{w_{av}} = \frac{\Delta V}{w_{av}} = 0.589\Delta$$

A resolution of 1.5 gives an essentially complete separation of A and B.

Column Efficiency - Theoretical Plates (N)

- Martin & Synge (1941):
 Treated a chromatographic column as if it were similar to a distillation column made up of numerous discrete but contiguous narrow layers (theoretical plates).

$$N = \frac{L}{H} = \frac{L}{\sigma^2} = \frac{16L^2}{w^2}$$

$$\sigma = \frac{w}{4\sqrt{N}}$$

Example: A solute with a retention time of 407 s has a base width of 13 s on a 12.2 m column. Find the plate height and number of plates.

$$N = \frac{16t^2}{w^2} = \frac{(16)(407)^2}{13^2} = 1.57 \times 10^4$$

$$H = \frac{L}{N} = \frac{12.2}{1.57 \times 10^4} = 0.78 \text{ mm}$$

Factors Affecting Resolution

$$\text{Resolution} = \left(\frac{\sqrt{N}}{4}\right)^{y-1}$$

y: separation factor

Increase resolution:
- Increase column length (Square root of N)
- Change phase interaction
- Increase capacity factor (Increase fraction of time solute spends in stationary phase)

Factors Affecting Resolution - Column Length

Doubling the column length increases resolution by $(2)^{1/2}$
Column Efficiency- van Deemter Equation

\[H \approx A + \frac{B}{u_y} + Cu_y \]

- \(H \) is plate height
- \(u \) is the flow rate through the column
- \(A \), Multiple paths (Eddy diffusion)
- \(B/u_y \), Longitudinal diffusion (molecular diffusion)
- \(Cu_y \), Equilibration time (resistance to mass transfer)

Multiple Paths (Eddy Diffusion)

In a packed column, analyte can diffuse through many different paths around the stationary phase.

Longitudinal Diffusion

- Solute diffuses from the high concentration within the band to regions of lower concentration on the edges of the band.
- Is inversely proportional with flow rate

Equilibration Time

- Some solute is stuck in the stationary phase, which falls behind the solute in the moving forward mobile phase.
- Resulting in spreading the overall zone of solute
- Is proportional to flow rate

Van Deemter Plot for Gas Chromatography

- A minimal plate height of \(~3\) mm is obtained with flow rate of \(~35\) mL/min.
- Because longitudinal diffusion in a gas is much faster than diffusion in a liquid, the optimum linear flow rate in gas chromatography is higher than in liquid chromatography.
Asymmetric Bandshapes
- Theoretically, the band coming off a column should be Gaussian but this is not always the case
- This usually occurs when the partition coefficient, $K (C_s/C_m)$, changes during the run
 - K can become either bigger or smaller
 - K becomes bigger when too much solute has been put into the column (overloading)—so much solute is dissolved that the stationary phase acts like the solute
 - K becomes smaller due to tailing—this is when the solute binds strongly to some sites on the column

Asymmetry and K
- Isotherm: a graph of C_s vs C_m at a given temperature
- Overloading produces a gradual rise and an abrupt fall of the chromatographic peak (load less solute).
- A long tail occurs when some sites retain solute more strongly than other sites (silanization to block –OH).

Ch. 24 Gas Chromatography (GC)

GC Process
- In gas chromatography, vapor-phase analyte is swept through the column by a gaseous mobile phase (carrier gas)
 - Gas-liquid chrom (liquid stationary phase)
 - Gas-solid chrom (solid stationary phase)
 - The mobile phase is usually He, N_2, or H_2 depending on the application
- The analyte is a volatile liquid or gas that is injected through a septum (rubber disk)

Open Tubular Columns
- Fused silica (SiO_2) coated with a polyimide that can withstand 350°C.
- Typically, inner diameters are 0.10-0.53 mm and lengths are 15-100 m.
- Compared to packed columns: give higher resolution, shorter analysis time, greater sensitivity, lower sample capacity
Effect of Inner Diameter on Resolution

Effect of Column Length on Resolution

Effect of Stationary Phase Thickness on Resolution

Open Tubular Columns

Stationary Phases

- Chosen based on the rule that “like dissolves like”.
- The silica backbone and the polarity.
- Strongly polar columns are best for strongly polar solute.
- As a column ages, stationary phase bakes off and Si-OH groups become exposed (tailing peaks).

<table>
<thead>
<tr>
<th>Table 24-2</th>
<th>Polarity of solutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolar</td>
<td>Weak intermediate polarity</td>
</tr>
<tr>
<td>Saturated hydrocarbons</td>
<td>Ethers</td>
</tr>
<tr>
<td>Olefinic hydrocarbons</td>
<td>Ketones</td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td>Aldehydes</td>
</tr>
<tr>
<td>Halocarbons</td>
<td>Esters</td>
</tr>
<tr>
<td>Mercaptans</td>
<td>Tertiary amines</td>
</tr>
<tr>
<td>Sulfoxides</td>
<td>Nitro compounds (without α-H atoms)</td>
</tr>
<tr>
<td>Sulfides</td>
<td>Nitrites (without α-atoms)</td>
</tr>
<tr>
<td>Strong intermediate polarity</td>
<td>Strongly polar</td>
</tr>
<tr>
<td>Alcohols</td>
<td>Polyhydroxylalcohols</td>
</tr>
<tr>
<td>Carbonylic acids</td>
<td>Amino alcohols</td>
</tr>
<tr>
<td>Phenols</td>
<td>Hydroxy acids</td>
</tr>
<tr>
<td>Primary and secondary amines</td>
<td>Polymeric acids</td>
</tr>
<tr>
<td>Oximes</td>
<td>Polyphenols</td>
</tr>
<tr>
<td>Nitro compounds (with α-H atoms)</td>
<td>Polyphenols</td>
</tr>
<tr>
<td>Nitrites (with α-atoms)</td>
<td>Polyphenols</td>
</tr>
</tbody>
</table>

Retention Time

Non-polar stationary phase: compounds elute mostly based on boiling point.
Polar stationary phase: strongly retains the polar solutes (alcohols are strongly retained).

The Kovats Retention Index \((I) \)

- Retention index relates the retention time of a solute to the retention times of linear alkanes.
- For a linear alkane, \(I = 100 \times \# \) of C atoms (ex. for octane \(I = 800 \); for nonane, \(I = 900 \)).

\[
I = 100 \left[n + \left(N - n \right) \frac{\log t_r(\text{unknown}) - \log t_r(n)}{\log t_r(N) - \log t_r(n)} \right]
\]

\(N \): \# of carbon atoms in larger alkane
\(n \): \# of carbon atoms in smaller alkane

Example: If retention times for methane, octane, and nonane in a GC run are 0.5, 14.3, and 18.5 minutes respectively, what is the retention index for an unknown that elutes at 15.7 minutes?

\[
I = 100 \left[8 + \left(9 - 8 \right) \frac{\log 15.2 - \log 13.8}{\log 18.0 - \log 13.8} \right] = 836
\]

Temperature Programming

- The temperature of the column is raised during the separation to increase solute vapor pressure.
- Decreases retention time.
- Sharpens peaks.

Carrier Gas

- Helium is the most common carrier gas.
- The choice is mostly dependent on the type of detector used.
- \(H_2 \) provides the fastest separations and a better resolution, but limited by its reactivity.
Sample Injection

- "Sandwich" injection technique
- The air bubble before the sample: preventing sample from volatilizing in the injector oven before you inject it.
- The air bubble behind the sample: prevent sample and solvent from mixing.

Sample Injection

- Split injection: analytes are > 0.1% of the sample; impurities do not get onto the column in large concentrations.
- Splitless injection: trace analyses < 0.01% of the sample.
- On-column injection: go straight onto the column rather than through an injector oven; for samples that thermally decompose.

Detectors

- Most common:
 - Thermal conductivity detector (TCD)
 - Flame ionization detector (FID)
- Other detectors:
 - Mass spectrometer (MSD)
 - Infrared spectrometer (IRD)
 - Electron capture (ECD)
 - Nitrogen-phosphorous (NPD)
 - Atomic emission (AED)

Flame Ionization Detector (FID)

- The most common detector for GC
- Response nearly all analytes (insensitive to nonhydrocarbons)
- Has greater sensitivity than a TCD.
- Eluate is burned in a mixture of H2 and air. Most carbon atoms (except C=O) produce radicals that produce CHO in the flame:
 \[\text{CH} + \text{O} \rightarrow \text{CHO}^+ + e^- \]
- Measure the electron current produced, which is proportional to the number of molecules present.

Thermal Conductivity Detector (TCD)

- Measures how much a substance can transport heat from a hot to cold region.
- Helium is the commonly used carrier gas (has a 2nd highest thermal conductivity after H2)
- When an analyte emerges from the column with it, conductivity will decrease.
- Response to all analytes, but sensitivity is not very good.

Detector Figures of Merit

<table>
<thead>
<tr>
<th>Detector</th>
<th>Approximate detection limit</th>
<th>Linear range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal conductivity</td>
<td>400 pg/ml (propane)</td>
<td>>10^6</td>
</tr>
<tr>
<td>Flame ionization</td>
<td>2 pg/s</td>
<td>>10^8</td>
</tr>
<tr>
<td>Electron capture</td>
<td>As low as 5 fg/s</td>
<td>>10^6</td>
</tr>
<tr>
<td>Flame photometric</td>
<td><170 pg/s (phosphorus)</td>
<td>>10^6</td>
</tr>
<tr>
<td>Nitrogen-phosphorous</td>
<td>100 fg/s</td>
<td>>10^6</td>
</tr>
<tr>
<td>Sulfur chromeluminescence</td>
<td>100 fg/s (sulfur)</td>
<td>>10^6</td>
</tr>
<tr>
<td>Photoionization</td>
<td>25 pg to 100 pg (chromatics)</td>
<td>>10^6</td>
</tr>
<tr>
<td>Fourier transform infrared</td>
<td>200 pg to 40 ng</td>
<td>>10^6</td>
</tr>
<tr>
<td>Mass spectrometric</td>
<td>30 pg to 100 pg</td>
<td>>10^6</td>
</tr>
</tbody>
</table>