Chemical Bonding

There are basically two types of chemical bonds:
1. Covalent bonds—electrons are shared by more than one nucleus
2. Ionic bonds—electrostatic attraction between ions creates chemical bond

Hydrogen bonding and van der Waals’ bonding are subsets of electrostatic bonding

The Octet Rule

Atoms want to have a filled valence shell—for the main group elements, this means having filled s and p orbitals. Hence the name “octet rule” because when the valence shell is filled, they have a total of eight valence electrons.

We use “dot structures” to represent atoms and their electrons.
Lewis Dot Structures

 êDots around the elemental symbol represent the valence electrons.

Examples

Hydrogen (1s\(^1\)) \(\text{H}\) \(\cdot\)

Carbon (1s\(^2\) 2s\(^2\) 2p\(^2\)) \(\cdot\text{C}\cdot\)

Chlorine ([Ne] 3s\(^2\) 3p\(^5\)) \(\cdot\text{Cl}\cdot\)

Lewis Dot Structures

êNone of the atoms in the previous example contained full valence shells.
êWhen creating bonds, atoms may share electrons in order to complete their valence shells.
Lewis Dot Structures

Examples

H₂ molecule:

H needs two e’s to fill its valence shell.
Each hydrogen atom shares its electron with the other in order to fill their valence shells.

H· + ·H ⇒ H:H

The result is a “covalent bond” in which two electrons are shared between nuclei and create a chemical bond in the process.

When two e-’s are shared, it makes a “single” bond.
Lewis Dot Structures

Examples

F₂ molecule:
F has seven valence e⁻'s, but wants eight e⁻'s to fill its valence shell.

\[\text{:F· + ·F:} \rightarrow \text{:F:F:} \leftrightarrow \text{:F – F:} \]

A line is often used to represent shared electrons.

Lewis Dot Structures

Examples

CH₄ molecule:
C has four valence e⁻'s; H has one valence e⁻.

\[\text{·C· + 4 ·H} \rightarrow \text{H· ·C· ·H} \rightarrow \text{H: C: H} \]

\[\text{H – C – H} \]
Lewis Dot Structures

Examples

C_2H_4 molecule:

H ·· C ·· C ·· H ⇒ H ·· C :· C :· H

H
H
H

Is this complete—do all atoms have filled valence shells?

H ·· C :· C :· H

H
H

Sharing of four electrons between two nuclei results in a “double” bond.
Lewis Dot Structures

Examples

NH₃ molecule:

\[
\cdot\hat{N}\cdot \quad \quad \quad \quad 3 \cdot\hat{H}\cdot
\]

\[H\cdot\hat{N}\cdot\hat{H} \Rightarrow H\hat{N}H\]

Not all electrons in a Lewis dot structure need to be part of a chemical bond—some electrons may be in the form of “lone pairs.”

CO molecule:

\[
\cdot\hat{C}\cdot \quad \cdot\hat{O}\cdot \quad \qu...
Electronegativity and Bonding

- When nuclei share electrons to form a covalent chemical bond, the electrons are not necessarily shared equally—a shared electron may spend more time closer to one of the nuclei.
- The *electronegativity* of the nuclei determines how the electron is shared.
- Electronegativity is a measure of how strongly a “bound” electron participating in a chemical bond is attracted to a nucleus.

Electronegativity and Bonding

- Electronegativity is related to electron affinity and ionization energy.
- Electronegativity (denoted by the greek symbol χ) is highest for elements in the upper right hand side of the Periodic Table and increases from left to right and from bottom to top.
Electronegativity and Bonding

When two elements with different electronegativities bond, the resulting covalent bond will be polar, i.e., the shared electrons will spend more time closer to the nucleus with the higher χ, so that end of the bond will be slightly more negative, and the other end will be slightly more positive.

$\delta^+ \quad \delta^-$

H - F

$\chi = 2.1 \quad \chi = 4.0$
Polar Covalent Bonds

The molecule has a polar bond meaning the electrical charge is not equally distributed between the nuclei involved in the chemical bond. The molecule also has a dipole moment—an uneven distribution of electrical charge.

\[\delta^+ \quad \delta^- \]
\[H - F \]
\[\chi = 2.1 \quad \chi = 4.0 \]

Polar Covalent Bonds

Other Examples

Water: \(H_2O \) is a bent molecule with two pairs of unshared e\(^-\)'s in p orbitals.

Is water a polar molecule?

\[\delta^- \quad \delta^- \]
\[\delta^+ \quad \delta^+ \]
\[H\quad O\quad H \]
\[\chi(O) = 3.5 \quad \chi(H) = 2.1 \]
Polar Covalent Bonds

Examples
Carbon monoxide: CO
Is CO a polar molecule?

\[\delta^+ \: C \equiv \delta^- \: O: \]
\[\chi(O) = 3.5 \]
\[\chi(C) = 2.5 \]

Carbon dioxide: CO\(_2\) is a linear triatomic molecule.
Is CO\(_2\) a polar molecule?

\[\delta^- \: \overset{\ddot{-}}{O} = \delta^+ \: C = \delta^- \: \overset{\ddot{-}}{O} \]
\[\chi(O) = 3.5 \]
\[\chi(C) = 2.5 \]
The bonding between atoms can have a significant effect on the bond distance between atoms. Multiple bonds between two atoms have shorter bond lengths compared to single bonds involving the same elements:

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Average Bond Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Bond</td>
<td>C-C 154 pm</td>
</tr>
<tr>
<td></td>
<td>C-O 143 pm</td>
</tr>
<tr>
<td>Double Bond</td>
<td>C=C 133 pm</td>
</tr>
<tr>
<td></td>
<td>C=O 120 pm</td>
</tr>
<tr>
<td>Triple Bond</td>
<td>C≡C 120 pm</td>
</tr>
<tr>
<td></td>
<td>C≡O 113 pm</td>
</tr>
</tbody>
</table>
The bond energy is the amount of energy it takes to pull two atoms apart and break the chemical bond.

For some diatomic gas phase species, we know the bond energies exactly through measurement.

Bond Energies

For polyatomic molecules, we can calculate the average bond energy for a given type of bond by measuring bond energies in a wide variety of molecules containing that specific type of bond and averaging the results.

Just as in bond lengths, the type of bonding has a dramatic effect on the bond energy in molecules.

Multiple bonds are much harder to break than are single bonds.
Bond Energies

Examples (see Table 8-2 for a more complete list)

Average bond energy (kJ mol\(^{-1}\))

<table>
<thead>
<tr>
<th>Bond</th>
<th>Single bond</th>
<th>Double bond</th>
<th>Triple bond</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-H</td>
<td>416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-C</td>
<td>356</td>
<td>598</td>
<td>813</td>
</tr>
<tr>
<td>C-O</td>
<td>336</td>
<td>750</td>
<td>1073</td>
</tr>
<tr>
<td>C-N</td>
<td>285</td>
<td>616</td>
<td>866</td>
</tr>
<tr>
<td>N-N</td>
<td>160</td>
<td>418</td>
<td>946</td>
</tr>
<tr>
<td>N-O</td>
<td>201</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>C-S</td>
<td>272</td>
<td>575</td>
<td></td>
</tr>
</tbody>
</table>

Bond Energies

Example: Calculate the reaction enthalpy for the combustion of methane

Step 1—Write balanced chemical equation:
\[\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O} \]

Step 2—Determine energy needed to break bonds:
- 4 C-H bonds: 4 x 416 kJ/mol = 1664 kJ/mol
- 2 O=O bonds: 2 x 498 kJ/mol = 996 kJ/mol

Total energy to break bonds = 2660 kJ/mol
Bond Energies

Example: Calculate the reaction enthalpy for the combustion of methane

Step 3—Determine energy released in forming new bonds:
- 2 C=O bonds: 2 x -750 kJ/mol = -1500 kJ/mol
- 4 O-H bonds: 4 x -467 kJ/mol = -1868 kJ/mol
- total energy to form bonds = -3368 kJ/mol

Step 4—Determine enthalpy of reaction:
\[\Delta H_{\text{rxn}} = E_{\text{break bonds}} + E_{\text{form bonds}} \]
\[= 2660 \text{ kJ/mol} - 3368 \text{ kJ/mol} = -708 \text{ kJ/mol} \]
\[\Delta H_{\text{rxn}} = -802 \text{ kJ/mol} \text{ (literature value)} \]

Reaction Energies

Example: combustion of acetylene
\[2 \text{C}_2\text{H}_2 + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 2 \text{H}_2\text{O} \]
- Which bonds are broken?
 - 4 x C-H 4 (415 kJ mol\(^{-1}\)) = 1660 kJ mol\(^{-1}\)
 - 2 x C≡C 2 (835 kJ mol\(^{-1}\)) = 1670 kJ mol\(^{-1}\)
 - 5 x O=O 5 (495 kJ mol\(^{-1}\)) = 2475 kJ mol\(^{-1}\)
- total energy needed = 5805 kJ mol\(^{-1}\)
Reaction Energies

Example: combustion of acetylene

\[2 \text{C}_2\text{H}_2 + 5 \text{O}_2 \rightarrow 4 \text{CO}_2 + 2 \text{H}_2\text{O} \]

- Which bonds are formed?

\[
\begin{align*}
8 \times \text{C}=\text{O} & \quad 8 (800 \text{ kJ mol}^{-1}) = 6400 \text{ kJ mol}^{-1} \\
4 \times \text{O}-\text{H} & \quad 4 (460 \text{ kJ mol}^{-1}) = 1840 \text{ kJ mol}^{-1} \\
total \text{ energy released} & \quad = 8240 \text{ kJ mol}^{-1}
\end{align*}
\]

\[\Delta E_{\text{rxn}} = \Sigma E_{\text{react}} - \Sigma E_{\text{prod}} \]

\[= 5805 \text{ kJ mol}^{-1} - 8240 \text{ kJ mol}^{-1} \]

\[= -2435 \text{ kJ mol}^{-1} (-2512 \text{ kJ mol}^{-1} \text{ actual}) \]
Reaction Energies

Example:
6 H₂O + 2 N₂ → 4 NH₃ + 2 O₂
• Which bonds are broken?
 12 x O-H 12 (460 kJ mol⁻¹) = 5520 kJ mol⁻¹
 2 x N≡N 2 (945 kJ mol⁻¹) = 1890 kJ mol⁻¹
 total energy needed = 7410 kJ mol⁻¹

Reaction Energies

Example:
6 H₂O + 2 N₂ → 4 NH₃ + 3 O₂
• Which bonds are formed?
 12 x N-H 12 (390 kJ mol⁻¹) = 4680 kJ mol⁻¹
 3 x O=O 3 (495 kJ mol⁻¹) = 1485 kJ mol⁻¹
 total energy released = 6165 kJ mol⁻¹

ΔErxn = ΣBEₜₐₜ - ΣBEₚᵟᵩₐₜ
 = 7410 kJ mol⁻¹ - 6165 kJ mol⁻¹
 = 1245 kJ mol⁻¹ (1267 kJ mol⁻¹ actual)
Reaction Energies

Endothermic reaction

\[\text{H}_2\text{O} + \text{N}_2 \rightarrow \text{NH}_3 + \text{O}_2 \]

products

1245 kJ mol\(^{-1}\)

Formal Charge of Atoms

The **formal charge** of an atom in a molecule is the charge the atom would have if all electrons were shared equally.

Rules:

1. All lone pair electrons are assigned to the atom to which they are associated.
2. Half of the bonding electrons are assigned to each atom comprising that bond.

The sum of these electrons is subtracted from the number of valence electrons to determine the formal charge.
Formal Charge of Atoms

Rules (con't.):
3. The sum of formal charges for each atom in the molecule must equal the actual charge of the molecule: 0 for a neutral molecule; ionic charge for an ion.

Example: carbon monoxide

\[:\text{C} \equiv \text{O} : \]

<table>
<thead>
<tr>
<th></th>
<th>\text{C}</th>
<th>\text{O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valence electrons</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Lone pair electrons</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>(\frac{1}{2}) shared electrons</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Formal charge</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

Example: carbon dioxide

\[\overset{=}{\text{O}} = \overset{=}{\text{C}} = \overset{=}{\text{O}} \]

<table>
<thead>
<tr>
<th></th>
<th>\text{C}</th>
<th>\text{O}</th>
<th>\text{O}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valence electrons</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Lone pair electrons</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>(\frac{1}{2}) shared electrons</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Formal charge</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Formal Charge of Atoms

Example: Nitrous oxide, N₂O

\[\overset{-1}{\overset{+1}{\overset{0}{\overset{+1}{O}}}} = N = N \overset{-1}{\overset{+1}{\overset{0}{O}}} \]

structure #1

\[\overset{-1}{\overset{+1}{\overset{0}{\overset{+1}{O}}}} - N = N \overset{-1}{\overset{+1}{\overset{0}{O}}} \]

structure #2

The formal charge can help predict which structure is preferred when multiple Lewis structure can be made:

• Smaller formal charges are preferred
• Negative formal charge should reside on more electronegative atoms
• Like charge should not be on adjacent atoms

Molecular Orbitals

When atomic orbitals overlap to create a covalent bond, the result is the formation of molecular orbitals.

Molecular orbitals define the region of space most likely to contain bonding electrons—MO’s are drawn as 90% electron density contours just as AO’s are drawn 90% electron density contours in atoms.
Molecular Orbitals

Because electrons can be described as waves, when the AO’s overlap, the waves may either constructively interfere or destructively interfere.

Constructive interference between the AO’s results in a bonding MO—destructive interference between AO’s results in an anti-bonding MO with a node along the internuclear axis.

Anti-bonding orbitals are higher in energy than bonding orbitals.

Overlap of s-type atomic orbitals to form either bonding or anti-bonding molecular orbitals. Anti-bonding orbitals are designated with an asterisk (*).
Molecular Orbitals

Amplitudes add:
High electron density between nuclei

$2s + 2s$ → σ orbital

Amplitudes subtract:
Low electron density between nuclei

$2s - 2s$ → σ^* orbital

Molecular Orbitals

Amplitudes subtract:
Low electron density between nuclei

$2p - 2p$ → π^* orbital

Node
Molecular Orbitals

A molecular orbital diagram can be constructed from the atomic orbitals of the bonding elements.

H₂: H··H ⇒ H – H

The 1s e⁻’s of each H atom go into the lower energy σ MO resulting in the formation of a single σ bond.

Configuration: (σ)²

Molecular Orbitals

He₂: He: :He

The 1s e⁻’s of each He atom fill both the σ MO and the σ* MO. The bonding effect of the σ MO is offset by the anti-bonding effect of the σ* MO—no net bonding is observed.

Configuration: (σ)²(σ*)²
Molecular Orbitals

Bond order is defined in the following way:

\[
\text{bond order} = \frac{1}{2} \text{ (# e-'s in bonding MO's)} - \frac{1}{2} \text{ (# e-'s in anti-bonding MO's)}
\]

\(\text{H}_2 \): bond order = \(\frac{1}{2} \times 2 \) – \(\frac{1}{2} \times 0 \) = 1

\(\text{H}_2 \) has a single bond

\(\text{He}_2 \): bond order = \(\frac{1}{2} \times 2 \) – \(\frac{1}{2} \times 2 \) = 0

\(\text{He}_2 \) has no bond \(\Rightarrow \) compound does not form

N\(_2\):

\[\begin{array}{c}
\uparrow \\
2p \\
\downarrow \\
\hline
\uparrow \\
\pi \\
\downarrow \\
\hline
\uparrow \\
\sigma \\
\downarrow \\
\hline
\uparrow \\
2s \\
\downarrow \\
\hline
\uparrow \\
\sigma \\
\downarrow \\
\hline
\uparrow \\
1s \\
\downarrow \\
\end{array} \]
Molecular Orbitals

N_2:
\[\text{N} \quad \uparrow \quad \uparrow \quad \uparrow \quad \pi \quad \uparrow \quad \uparrow \quad \uparrow \quad \sigma \quad \uparrow \quad \uparrow \quad \uparrow \quad \text{N} \]

Bond order = 1
(single bond)

Molecular Orbitals

F_2:
\[\text{F} \quad \uparrow \quad \uparrow \quad \uparrow \quad \pi^* \quad \uparrow \quad \uparrow \quad \uparrow \quad \sigma^* \quad \uparrow \quad \uparrow \quad \uparrow \quad \text{F} \]

Bond order = 1
(single bond)
Problems with Valence Bond Theory and Lewis Dot Structures

Valence Bond Theory (including Lewis structures and hybrid orbital theories) does an excellent job at explaining the bonding in many chemical systems. It fails miserably in describing delocalized bonding systems and some very simple molecules like O_2.

Problems with Valence Bond Theory and Lewis Dot Structures

Molecular oxygen, O_2

Properties

O_2 has a double bond
O_2 is paramagnetic (has two unpaired electrons)

Predicted Lewis structure:

\[\overset{\cdot}{O} = \overset{\cdot}{O} \]

The Lewis structure correctly predicts a double bond, but there are no unpaired electrons.
Molecular Orbitals

\(\text{O}_2 \):

1s

2s

s

s*

2p

p

p*

\(2 \) (double bond)

Bond order
MO Description of Molecular Oxygen

Electron configuration of O_2 is:

$$\begin{align*}
&\left(\sigma_s\right)^2\left(\sigma_s^*\right)^2\left(\sigma_s\right)^2\left(\sigma_s^*\right)^2\left(\sigma_p\right)^2\left(\pi\right)^4\left(\pi^*\right)^2 \\
&1s \quad 2s \quad 2p
\end{align*}$$

MO theory correctly predicts that O_2 has a double bond (bond order = 2) and that O_2 is paramagnetic.

Molecular Orbital Diagram for Heteronuclear Diatomic Molecule
Molecular Orbital Diagram for Heteronuclear Diatomic Molecule

CO:

C

\[\begin{array}{c}
1s \\
2s \\
2p \\
\end{array} \]

O

\[\begin{array}{c}
1s \\
2s \\
2p \\
\end{array} \]

\[\sigma_p \]

\[\pi \]

bond order = 3
(triple bond)