Group Theory and Symmetry

point groups, symmetry elements, matrix representations and properties of groups

2

• Name and show on a diagram five (5) symmetry elements in SF₆.
symmetry elements and associated operations

• Proper axis of Rotation
 ➤Proper rotation, C_n: One or more rotations by an angle of $2\pi n$ radians. The "n" value is often referred to as the order of the rotation axis. Note that since the bonds around the proper axis are identical, their bond moments must cancel and thus a dipole moment (if any) lies along the proper axis of rotation.

examples

• H_2O
• CH_3Cl
• $Pt(NH_3)_2Cl_2$
• $PtCl_4^{2-}$
symmetry elements and associated operations

• Plane of reflection
 ➤Reflection, σ: reflection through a plane to interchange objects on either side of the plane. Three distinct types.
 • σ_v: reflection through a plane which contains the highest order rotation axis (C_n with the greatest n) and atoms of the molecule.
 • σ_d: similar to σ_v but does not contain atoms of the molecule.
 • σ_h: reflection through a plane which is normal to (perpendicular to) the highest order rotation axis.

examples

• H_2O
• CH_3Cl
• cis and trans $\text{Pt(NH}_3)_2\text{Cl}_2$
• PtCl_4^{2-}
symmetry elements and associated operations

• Improper axis of rotation
 ➢ improper rotation, S_n: This symmetry operation consists of two consecutive operations, a proper rotation, C_n, followed by a horizontal reflection, σ_h.

examples

• H_2O
• CH$_3$Cl
• Pt(NH$_3$)$_2$Cl$_2$
• PtCl$_4^{2-}$
how to categorize molecular symmetries

- certain groups of symmetry operations form a mathematical group
- these closed sets of symmetry operations form what is called a point group

Today

- Exam is on Friday...
- HW 2 due Wednesday-solutions posted shortly after class...
- Today- point groups and matrix representations
group work: assign point groups

- SiCl$_3$(CH$_3$)
- trans-SF$_4$Cl$_2$
- OXeF$_4$
- CHClF$_2$
- trans-Cl$_2$C$_2$H$_2$
- CO$_2$
- PF$_3$
- cis-PtCl$_2$Br$_2$$^-$2 (square planar geometry)
- cis- Cl$_2$C$_2$H$_2$
- SiClHBrF
Today’s question

• Sketch the ion PSO_3^{3-} (thiophosphate) and indicate the symmetry elements present and state the point group

Up to date

• Exam Friday: quantum theory, periodicity, lewis structures and point groups are the main topics.
• Readings today...
 ➤87-100
• For Monday
 ➤109-128 (we’ll come back to vibrations...)
• Draw the symmetry elements in 1,2 dichloroethane in the *trans* configuration.

• **Closure**
 ➤ Subsequent application of any series of symmetry operations is equivalent to one of the other operations.

• **Identity**
 ➤ The do-nothing operation is important.
$$C_{2v} \text{ group multiplication table}$$

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>σ_v</th>
<th>σ_v'</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E</td>
<td>C_2</td>
<td>σ_v</td>
<td>σ_v'</td>
</tr>
<tr>
<td>C_2</td>
<td>C_2</td>
<td>E</td>
<td>σ_v'</td>
<td>σ_v</td>
</tr>
<tr>
<td>σ_v</td>
<td>σ_v</td>
<td>σ_v'</td>
<td>E</td>
<td>C_2</td>
</tr>
<tr>
<td>σ_v'</td>
<td>σ_v'</td>
<td>σ_v</td>
<td>C_2</td>
<td>E</td>
</tr>
</tbody>
</table>

matrix representations of symmetry operations

- Use the C_{2v} point group as an example.
- Consider the effect of performing a C_2 operation on an object. The new position of a point x,y,z after the operation, x',y',z', can be found by using a matrix form for the operation.
- The point x,y,z is found by using the three orthogonal unit vectors.
matrix representation of C_2 on a vector, x, y, z

- C_2 (rotation)
- $x \rightarrow -x$
- $y \rightarrow -y$
- $z \rightarrow z$
- the ‘reducible representation’ is the sum of the diagonal elements
 - $-1 + (-1) + 1 = -1$

\[
C_2 = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
-x \\
-y \\
z
\end{pmatrix}
\]

how about σ_v on a unit vectors, x, y, z

- σ_v (contains the xz plane):
- $x \rightarrow x$
- $y \rightarrow -y$
- $z \rightarrow z$
- reducible representation is trace of the matrix,
 - $1 + (-1) + 1 = 1$

\[
\sigma_v = \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
= \begin{pmatrix}
x \\
-y \\
z
\end{pmatrix}
\]
\(\sigma_v' \) (contains yz plane): \(x \rightarrow -x; \ y \rightarrow y \) and \(z \rightarrow z \)

- reducible representation
 \[\begin{align*}
 \text{reducible representation} &= -1 + 1 + 1 = 1
 \\
 \sigma_v' &= \begin{pmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -x \\ y \\ z \end{pmatrix}
 \end{align*} \]

identity operation on a vector, \(x, y, z \)

- reducible representation
 \[\begin{align*}
 \text{reducible representation} &= 1 + 1 + 1 = 3
 \\
 E &= \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}
 \end{align*} \]
summarizing how (x,y,z) is transformed

- operation reducible representation
- E 3
- C_2 -1
- $\sigma_v(xz)$ 1
- $\sigma_v(yz)$ 1
- Note that these vectors behave like the p orbitals

character table for C_{2v}

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>$\sigma_v(xz)$</th>
<th>$\sigma_v(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
• the top row which lists the symmetry operations of the point group
• the leftmost column lists the Mulliken symbols for the irreducible representations of that point group. For A and B (1 dimensional, non-degenerate irreducible representations) the difference lies in the character for the highest order rotation (for A, \(\chi = 1 \) and for B, \(\chi = -1 \)). The labels for the E and T irreducible reps can be considered arbitrarily assigned.

Character table for \(C_{2v} \)

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C2</th>
<th>(\sigma_v(xz))</th>
<th>(\sigma_v(yz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
note several features

• number of symmetry types is equal to the number of operations
• Mullikan symbols (left column) indicate fundamental symmetry types, irreducible representations
• these are orthogonal, with cross products = 0
• These irreducible representations are analogous to unit vectors in a “symmetry space”

reducible vs. irreducible reps

• reducible representation for the vector x,y,z is not the same as any of those for the symmetry types in the character table.
• How do the individual unit vectors along the x, y and z axes transform (i.e., what are their characters)
group work: find characters for:
(no looking at books) \((C_{2v})\)

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C2</th>
<th>(\sigma_v(xz))</th>
<th>(\sigma_v(yz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2s</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3d(_{z^2})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3d(_{x^2-y^2})</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3d(_{yz})</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Rotation(x)"</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>Rotation(y)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Rotation(z)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

Today

- Reducible to irreducible representations
- What can be done with the irreducible representations...
- Next time: bonding theory and applications of group theory
HE 1

<table>
<thead>
<tr>
<th>ave</th>
<th>12</th>
<th>9</th>
<th>14.3</th>
<th>10.3</th>
<th>12.3</th>
<th>54.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>stddev</td>
<td>3.7</td>
<td>5.5</td>
<td>2.5</td>
<td>5.7</td>
<td>3.4</td>
<td>18.9</td>
</tr>
<tr>
<td>max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.0</td>
</tr>
<tr>
<td>overall ave/q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.6</td>
</tr>
</tbody>
</table>

Character Table

<table>
<thead>
<tr>
<th>C<sub>2v</sub></th>
<th>E</th>
<th>C<sub>2</sub></th>
<th>σ<sub>v(xz)</sub></th>
<th>σ<sub>v(yz)</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>A<sub>1</sub></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A<sub>2</sub></td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B<sub>1</sub></td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B<sub>2</sub></td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

- z, z², x², y²,
- R_z, xy
- x, R_y, xz
- y, R_x, yz
symmetry of orbitals and vibrations

• how do things that are part of a molecule change under allowed symmetry operations?
• how can we determine the symmetry types of more complex systems than \((x,y,z)\)
 ➤ that is, how can one get the irreducible representations from reducible representations?

Orbitals: two methods

• by inspection
• by use of group theory and the following formula

\[
N = \frac{1}{h} \sum \chi_r^x \cdot \chi_i^x \cdot n^x
\]
add a column to character table

<table>
<thead>
<tr>
<th>C_{2v}</th>
<th>E</th>
<th>C2</th>
<th>$\sigma_V(xz)$</th>
<th>$\sigma_V(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

$N = \frac{1}{h} \sum_x \chi_r^x \cdot \chi_i^x \cdot n^x$

- N: number of times irred rep, x, appears in the reducible representation
- h is the order of the group (sum of all E characters)
- χ_r is the character of the reducible representation for the operation, x
- χ_i is the character of the irreducible representation for the operation, x
- n is the number of operations in the class, x
add a column to character table

\[
\begin{array}{c|cccc|c}
C_{2v} & E & C2 & \sigma_v(xz) & \sigma_v(yz) \\
\hline
A_1 & 1 & 1 & 1 & 1 & z, z^2, x^2, y^2 \\
A_2 & 1 & 1 & -1 & -1 & R_z, xy \\
B_1 & 1 & -1 & 1 & -1 & x, R_y, xz \\
B_2 & 1 & -1 & -1 & 1 & y, R_x, yz \\
\end{array}
\]

two examples:
(x,y,z) in C_{2v}
s orbitals in PtCl_{4}^{2-} (D_{4h})

- the first example will confirm what may be deduced by inspection
- the second example will illustrate doubly degenerate irreducible representations
(x, y, z) in C_{2v}

- E, identity, character = 3

 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 \]

- C_2, proper rotation, character = -1 (note negative 1 matrix elements)

 \[
 C_2 = \begin{pmatrix}
 -1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1 \\
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 -x \\
 -y \\
 z \\
 \end{pmatrix}
 \]

σ_v's

- $\sigma_v (xz)$, character is +1 (note negative 1)

 \[
 \begin{pmatrix}
 1 & 0 & 0 \\
 0 & -1 & 0 \\
 0 & 0 & 1 \\
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 x \\
 -y \\
 z \\
 \end{pmatrix}
 \]

- $\sigma_v (yz)$, character is +1 (note negative 1)

 \[
 \begin{pmatrix}
 -1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{pmatrix}
 \begin{pmatrix}
 x \\
 y \\
 z \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 -x \\
 y \\
 z \\
 \end{pmatrix}
 \]
Character Table for C_{2v}

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>$\sigma_{v}(xz)$</th>
<th>$\sigma_{v}(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

Characters for Reducible Representations

- $E = 3$
- $C_2 = -1$
- $\sigma_v = 1$
- $\sigma_{v}' = 1$
\[N = \frac{1}{h} \sum_{x} \chi_{r}^{x} \bullet \chi_{i}^{x} \bullet n^{x} \]

- \(N \): number of times irred rep, \(x \), appears in the reducible representation
- \(h \) is the order of the group (sum of all \(E \) characters)
- \(\chi_{r} \) is the character of the reducible representation for the operation, \(x \)
- \(\chi_{i} \) is the character of the irreducible representation for the operation, \(x \)
- \(n \) is the number of operations in the class, \(x \)
 - \(C_4 \) would be a class (not in \(C_{2v} \))
 - In \(C_{4v} \) there are 2 \(C_4 \)

\[N(A_1) = \frac{1}{4} \{ 3 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \} = 1 \]
\[N(A_2) = \frac{1}{4} \{ 3 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \} = 0 \]
\[N(B_1) = \frac{1}{4} \{ 3 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \} = 1 \]
\[N(B_2) = \frac{1}{4} \{ 3 \cdot 1 - 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 \} = 1 \]
irreducible representations for x, y, z in C_{2v}

- A_1, B_1, B_2

<table>
<thead>
<tr>
<th>C_{2v}</th>
<th>E</th>
<th>C2</th>
<th>$\sigma_v(xz)$</th>
<th>$\sigma_v(yz)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>z, z^2, x^2, y^2</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_z, xy</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x, R_y, xz</td>
</tr>
<tr>
<td>B_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y, R_x, yz</td>
</tr>
</tbody>
</table>
s orbitals in PtCl$_4^{2-}$ (D$_{4h}$)

• some symmetry elements shown to right
• all the ops are listed in the table on the following slide
• need to see how the 5 orbitals transform
• know E will have red rep char = 5

character table for D$_{4h}$
use a matrix form:

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 s_{Pt} \\
 s_{Cl1} \\
 s_{Cl2} \\
 s_{Cl3} \\
 s_{Cl4} \\
\end{pmatrix}
=
\begin{pmatrix}
 s_{Pt} \\
 s_{Cl4} \\
 s_{Cl3} \\
 s_{Cl2} \\
 s_{Cl1} \\
\end{pmatrix}
\]

how about \(\sigma_v \)

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\begin{pmatrix}
 s_{Pt} \\
 s_{Cl1} \\
 s_{Cl2} \\
 s_{Cl3} \\
 s_{Cl4} \\
\end{pmatrix}
=
\begin{pmatrix}
 s_{Pt} \\
 s_{Cl1} \\
 s_{Cl4} \\
 s_{Cl3} \\
 s_{Cl2} \\
\end{pmatrix}
\]
Group work—write matrices and find the rest of the characters for the reducible representations of the Sym. Ops.

- E, character = 5
- C_4, character = 1
- C_2, character = 1
- C_2', character = 3
- C_2'', character = 1
- i, character = 1
- S_4, character = 1
- σ_h, character = 5
- σ_v, character = 3
- σ_d, character = 1

$N = \frac{1}{h} \sum_x \chi_r^x \cdot \chi_i^x \cdot n^x$

- N: number of times irred rep, x, appears in the reducible representation
- h is the order of the group (sum of all E characters)
- χ_r is the character of the reducible representation for the operation, x
- χ_i is the character of the irreducible representation for the operation, x
- n is the number of operations in the class, x
now to find irred reps in the reducible representation

\[h = 1 + 2 + 1 + 2 + 2 + 1 + 2 + 1 + 2 + 2 = 16 \]

\[N(A_{1g}) = \frac{1}{16} \{ 1 \cdot 5 \cdot 1 + 1 \cdot 1 \cdot 2 + 1 \cdot 1 \cdot 1 + 1 \cdot 3 \cdot 2 + 1 \cdot 1 \cdot 2 + 1 \cdot 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 5 \cdot 1 + 1 \cdot 3 \cdot 2 + 1 \cdot 1 \cdot 2 \} \]

\[N(A_{1g}) = 2 \]

\[N(A_{2g}) = \frac{1}{16} \{ 1 \cdot 5 \cdot 1 + 1 \cdot 1 \cdot 2 + 1 \cdot 1 \cdot 1 + (-1 \cdot 3 \cdot 2) + (-1 \cdot 1 \cdot 2) + 1 \cdot 1 \cdot 1 + 1 \cdot 1 \cdot 1 + 1 \cdot 5 \cdot 1 + (-1 \cdot 3 \cdot 2) + (-1 \cdot 1 \cdot 2) \} = 0 \]

\[N(B_{1g}) = \frac{1}{16} \{ 1 \cdot 5 \cdot 1 + (-1 \cdot 1 \cdot 2) + 1 \cdot 1 \cdot 1 + 1 \cdot 3 \cdot 2 + 1 \cdot 1 \cdot 2 + (-1 \cdot 1 \cdot 1) + (-1 \cdot 1 \cdot 1) + 1 \cdot 5 \cdot 1 + (1 \cdot 3 \cdot 2) + (-1 \cdot 1 \cdot 2) \} = 1 \]

\[N(B_{2g}) = 0 \]

\[N(E_g) = \frac{1}{16} \{ 2 \cdot 5 \cdot 1 + (0 \cdot 1 \cdot 2) + (-2 \cdot 1 \cdot 1) + 0 \cdot 3 \cdot 2 + 0 \cdot 1 \cdot 2 + (2 \cdot 1 \cdot 1) + 0 \cdot 1 \cdot 1) + (-2 \cdot 5 \cdot 1 + (0 \cdot 3 \cdot 2) + (0 \cdot 1 \cdot 2) \} = 0 \]
finally

- $N(A_{1u}) = 1/16$
- $\{1\cdot5\cdot1+(1\cdot1\cdot2)+1\cdot1\cdot1+1\cdot3\cdot2+1\cdot1\cdot2+(-1\cdot1\cdot1)+(-1\cdot1\cdot1)+(-1\cdot5\cdot1)+(-1\cdot3\cdot2)+(-1\cdot1\cdot2)\} = 0$
- $N(A_{2u}) = 0$
- $N(B_{1u}) = 0$
- $N(B_{2u}) = 0$
- $N(E_u) = 1$

irreducible representations are

- 2 A_{1g} irreducible reps
- 1 B_{1g} irreducible rep
- 1 E_u irred rep
 ➢ the E_u rep is 2 fold degenerate (identity character is 2)
 ➢ indicates that some “s” orbitals are interchanged under the symmetry operations of the D_{4h} point group
irreducible representations are useful

- used in determination of molecular orbitals
 - orbitals that combine must be of same symmetry
- used in determining allowed transitions
 - symmetries of vibrations are important
 - use vectors to describe motion