California State University - Los Angeles

Department of Mathematics
Master's Degree Comprehensive Examination
Complex Analysis Winter 2002
Chang, Hoffman*, Katz

Do five of the following seven problems. Each problem is worth 20 points. Please write in a fairly soft pencil (number 2) (or in ink if you wish) so that your work will duplicate well. There should be a supply available.

Exams are being graded anonymously, so put your name only where directed and follow any instructions concerning identification code numbers.

Notation: \mathbb{C} denotes the set of complex numbers.
\mathbb{R} denotes the set of real numbers.
$\operatorname{Re}(z)$ denotes the real part of the complex number z.
$\operatorname{Im}(z)$ denotes the imaginary part of the complex number z.
\bar{z} denotes the complex conjugate of the complex number z.
$|z|$ denotes the absolute value of the complex number z.
$\log z$ denotes the principal branch of $\log z$.
$\operatorname{Arg} z$ denotes the principal branch of $\arg z$.
$D(z ; r)$ is the open disk with center z and radius r.
A domain is an open connected subset of \mathbb{C}.

MISCELLANEOUS FACTS

$$
\begin{aligned}
2 \sin a \sin b & =\cos (a-b)-\cos (a+b) & 2 \cos a \cos b & =\cos (a-b)+\cos (a+b) \\
2 \sin a \cos b & =\sin (a+b)+\sin (a-b) & 2 \cos a \sin b & =\sin (a+b)-\sin (a-b) \\
\sin (a+b) & =\sin a \cos b+\cos a \sin b & \cos (a+b) & =\cos a \cos b-\sin a \sin b \\
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} & & \\
\sin ^{2} a & =\frac{1}{2}-\frac{1}{2} \cos (2 a) & \cos ^{2} a & =\frac{1}{2}+\frac{1}{2} \cos (2 a)
\end{aligned}
$$

Winter 2002 \# 1. Describe and sketch each of the following sets
a. $\quad A=\left\{z \in \mathbb{C}: \operatorname{Re}\left(\frac{1}{z}\right)>\frac{1}{2}\right\}$
b. $\quad B=\left\{z \in \mathbb{C}:\left|\frac{z-2}{z+1}\right|>2\right\}$

Winter $2002 \# 2$. For z in \mathbb{C}, let $z=x+i y$ with x and y real. For each of the following real valued functions $u(x, y)$, determine whether there is a real valued function $v(x, y)$ such that the function $f(z)=u(x, y)+i v(x, y)$ is analytic and $f(0)=i$. If there is such a function v, find one and explain how you know that f is analytic. If there is not, explain how you know that there is not.
a. $\quad u(x, y)=(x+1) y$
b. $u(x, y)=(x+y) y$

Winter 2002 \# 3. Let $f(z)=\frac{z^{2}-1}{\sin \pi z}$
a. Find all singularities of f in \mathcal{C} and classify each as a pole (specifying the order), essential, removable, or other.
b. Explain why $f(z)$ has a series expansion of the form $\sum_{k=-\infty}^{\infty} c_{k} z^{k}$ valid for z near 0 . Which, if any, of the coefficients c_{k} for $k<0$ are not equal to 0 ?
c. Find c_{-1}, c_{0}, and c_{1}
d. What is the region of validity for the expansion discussed in part \mathbf{b} ?
e. Find $\int_{\gamma} f(z) d z$ where γ is the circle of radius 1 centered at the origin and travelled once counterclockwise.

Winter 2002 \# 4. Evaluate the following integrals using complex variable methods. Show any cirves and explain any estimates needed to justify your method.
a. $\int_{0}^{2 \pi} \frac{d \vartheta}{2+\cos \vartheta}$;
b. $\int_{-\infty}^{+\infty} \frac{d x}{x^{2}-4 x+5} \quad ; \quad$ c. $\int_{0}^{\infty} \frac{\sqrt{x}}{1+x^{2}} d x$

Winter $2002 \#$ 5. Let p be a polynomial with $p(0)=0$.
a. Evaluate $\int_{-\pi}^{\pi}\left(1-p\left(e^{i \theta}\right)\right) d \theta$
b. Show that there is at least one real number θ with $\left|1-p\left(e^{i \theta}\right)\right| \geq 1$

Winter $2002 \#$ 6. Let m and n be integers with $m>n>0$. Let $q(z)$ and $p(z)$ be polynomials of degree m and n

$$
p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n} \quad \text { and } \quad q(z)=b_{0} z^{m}+b_{1} z^{m-1}+\cdots+b_{m}
$$

Let γ_{R} be the circle of radius R centered at 0 and travelled once counterclockwise. Show that

$$
\lim _{R \rightarrow \infty} \frac{1}{2 \pi i} \int_{\gamma_{R}} \frac{p(z)}{q(z)} d z= \begin{cases}\frac{a_{0}}{b_{0}}, & \text { if } m=n+1 \\ 0, & \text { if } m-n>1\end{cases}
$$

Winter 2002\# 7. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is analytic on all of \mathbb{C} and that there is a polynomial p of degree n and a point z_{o} such that $|f(z)| \leq|p(z)|$ for all z with $|z| \geq\left|z_{o}\right|$.

Prove that f must be a polynomial of degree no more than n.

